Cargando…
Robust Attribute and Structure Preserving Graph Embedding
Graph embedding methods are useful for a wide range of graph analysis tasks including link prediction and node classification. Most graph embedding methods learn only the topological structure of graphs. Nevertheless, it has been shown that the incorporation of node attributes is beneficial in impro...
Autores principales: | Hettige, Bhagya, Wang, Weiqing, Li, Yuan-Fang, Buntine, Wray |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206273/ http://dx.doi.org/10.1007/978-3-030-47436-2_45 |
Ejemplares similares
-
Graph-based prediction of Protein-protein interactions with attributed signed graph embedding
por: Yang, Fang, et al.
Publicado: (2020) -
Improved Graph Embedding for Robust Recognition with outliers
por: Li, Peiyang, et al.
Publicado: (2018) -
Graph Autoencoder with Preserving Node Attribute Similarity
por: Lin, Mugang, et al.
Publicado: (2023) -
Auxiliary Graph for Attribute Graph Clustering
por: Li, Wang, et al.
Publicado: (2022) -
A Knowledge Graph Entity Disambiguation Method Based on Entity-Relationship Embedding and Graph Structure Embedding
por: Ma, Jiangtao, et al.
Publicado: (2021)