Cargando…
Balancing Between Accuracy and Fairness for Interactive Recommendation with Reinforcement Learning
Fairness in recommendation has attracted increasing attention due to bias and discrimination possibly caused by traditional recommenders. In Interactive Recommender Systems (IRS), user preferences and the system’s fairness status are constantly changing over time. Existing fairness-aware recommender...
Autores principales: | Liu, Weiwen, Liu, Feng, Tang, Ruiming, Liao, Ben, Chen, Guangyong, Heng, Pheng Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206277/ http://dx.doi.org/10.1007/978-3-030-47426-3_13 |
Ejemplares similares
-
Algorithmic fairness and bias mitigation for clinical machine learning with deep reinforcement learning
por: Yang, Jenny, et al.
Publicado: (2023) -
PMD: An Optimal Transportation-Based User Distance for Recommender Systems
por: Meng, Yitong, et al.
Publicado: (2020) -
Deep reinforcement learning for personalized treatment recommendation
por: Liu, Mingyang, et al.
Publicado: (2022) -
Tuning Fairness by Balancing Target Labels
por: Kehrenberg, Thomas, et al.
Publicado: (2020) -
The accuracy, fairness, and limits of predicting recidivism
por: Dressel, Julia, et al.
Publicado: (2018)