Cargando…
Joint Relational Dependency Learning for Sequential Recommendation
Sequential recommendation leverages the temporal information of users’ transactions as transition dependencies for better inferring user preference, which has become increasingly popular in academic research and practical applications. Short-term transition dependencies contain the information of pa...
Autores principales: | Wang, Xiangmeng, Li, Qian, Zhang, Wu, Xu, Guandong, Liu, Shaowu, Zhu, Wenhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206282/ http://dx.doi.org/10.1007/978-3-030-47426-3_14 |
Ejemplares similares
-
Deep learning for misinformation detection on online social networks: a survey and new perspectives
por: Islam, Md Rafiqul, et al.
Publicado: (2020) -
Graph Neural Network-Guided Contrastive Learning for Sequential Recommendation
por: Yang, Xing-Yao, et al.
Publicado: (2023) -
TRR: Target-relation regulated network for sequential recommendation
por: Di, Weiqiang, et al.
Publicado: (2022) -
Jointly Learning Multiple Sequential Dynamics for Human Action Recognition
por: Liu, An-An, et al.
Publicado: (2015) -
Deep Bi-LSTM Networks for Sequential Recommendation
por: Zhao, Chuanchuan, et al.
Publicado: (2020)