Cargando…
Drug-Disease Graph: Predicting Adverse Drug Reaction Signals via Graph Neural Network with Clinical Data
Adverse Drug Reaction (ADR) is a significant public health concern world-wide. Numerous graph-based methods have been applied to biomedical graphs for predicting ADRs in pre-marketing phases. ADR detection in post-market surveillance is no less important than pre-marketing assessment, and ADR detect...
Autores principales: | Kwak, Heeyoung, Lee, Minwoo, Yoon, Seunghyun, Chang, Jooyoung, Park, Sangmin, Jung, Kyomin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206286/ http://dx.doi.org/10.1007/978-3-030-47436-2_48 |
Ejemplares similares
-
Prediction of Drug-Drug Interaction Using an Attention-Based Graph Neural Network on Drug Molecular Graphs
por: Feng, Yue-Hua, et al.
Publicado: (2022) -
Prediction of adverse drug reactions based on knowledge graph embedding
por: Zhang, Fei, et al.
Publicado: (2021) -
Graph Neural Networks to Advance Anticancer Drug Design
por: Rassil, Asmaa, et al.
Publicado: (2020) -
DrugRep-HeSiaGraph: when heterogenous siamese neural network meets knowledge graphs for drug repurposing
por: Ghorbanali, Zahra, et al.
Publicado: (2023) -
Adverse Drug Reaction Discovery Using a Tumor-Biomarker Knowledge Graph
por: Wang, Meng, et al.
Publicado: (2021)