Cargando…
Role Equivalence Attention for Label Propagation in Graph Neural Networks
Semi-supervised relational learning methods aim to classify nodes in a partially-labeled graph. While popular, existing methods using Graph Neural Networks (GNN) for semi-supervised relational learning have mainly focused on learning node representations by aggregating nearby attributes, and it is s...
Autores principales: | Park, Hogun, Neville, Jennifer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206289/ http://dx.doi.org/10.1007/978-3-030-47436-2_42 |
Ejemplares similares
-
Attention-Based Graph Neural Network for Label Propagation in Single-Cell Omics
por: Bhadani, Rahul, et al.
Publicado: (2023) -
Rumor detection based on propagation graph neural network with attention mechanism
por: Wu, Zhiyuan, et al.
Publicado: (2020) -
SLGAT: Soft Labels Guided Graph Attention Networks
por: Wang, Yubin, et al.
Publicado: (2020) -
Rumor detection driven by graph attention capsule network on dynamic propagation structures
por: Yang, Peng, et al.
Publicado: (2022) -
Fast Prediction
of the Equivalent Alkane Carbon Number
Using Graph Machines and Neural Networks
por: Delforce, Lucie, et al.
Publicado: (2022)