Cargando…
ITGH: Information-Theoretic Granger Causal Inference on Heterogeneous Data
Granger causality for time series states that a cause improves the predictability of its effect. That is, given two time series x and y, we are interested in detecting the causal relations among them considering the previous observations of both time series. Although, most of the algorithms are desi...
Autores principales: | Behzadi, Sahar, Schelling, Benjamin, Plant, Claudia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206303/ http://dx.doi.org/10.1007/978-3-030-47436-2_56 |
Ejemplares similares
-
Heterogeneous Graphical Granger Causality by Minimum Message Length
por: Hlaváčková-Schindler, Kateřina, et al.
Publicado: (2020) -
On the Inference of Functional Circadian Networks Using Granger Causality
por: Pourzanjani, Arya, et al.
Publicado: (2015) -
Prophetic Granger Causality to infer gene regulatory networks
por: Carlin, Daniel E., et al.
Publicado: (2017) -
Elastic-Net Copula Granger Causality for Inference of Biological Networks
por: Furqan, Mohammad Shaheryar, et al.
Publicado: (2016) -
Causal Inference for Heterogeneous Data and Information Theory
por: Hlaváčková-Schindler, Kateřina
Publicado: (2023)