Cargando…
Multi-view Deep Gaussian Process with a Pre-training Acceleration Technique
Deep Gaussian process (DGP) is one of the popular probabilistic modeling methods, which is powerful and widely used for function approximation and uncertainty estimation. However, the traditional DGP lacks consideration for multi-view cases in which data may come from different sources or be constru...
Autores principales: | Zhu, Han, Zhao, Jing, Sun, Shiliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206310/ http://dx.doi.org/10.1007/978-3-030-47436-2_23 |
Ejemplares similares
-
Conditional Deep Gaussian Processes: Multi-Fidelity Kernel Learning
por: Lu, Chi-Ken, et al.
Publicado: (2021) -
Diffusion Acceleration with Gaussian process Estimated Reconstruction (DAGER)
por: Wu, Wenchuan, et al.
Publicado: (2019) -
Accelerating multiscale modelling of fluids with on-the-fly Gaussian process regression
por: Stephenson, David, et al.
Publicado: (2018) -
Fast methods for training Gaussian processes on large datasets
por: Moore, C. J., et al.
Publicado: (2016) -
Multi-Scale Gaussian Normalization for Solar Image Processing
por: Morgan, Huw, et al.
Publicado: (2014)