Cargando…
Correlation Matters: Multi-scale Fine-Grained Contextual Information Extraction for Hepatic Tumor Segmentation
Automatic tumor segmentation has been used as a diagnostic aid in the identification of diseases such as tumors from liver CT scans, and their treatment. Owing to their success in computer vision tasks, the state-of-the-art Fully Convolutional Networks (FCNs) or U-Net based models have often been em...
Autores principales: | Pang, Shuchao, Du, Anan, Yu, Zhenmei, Orgun, Mehmet A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206311/ http://dx.doi.org/10.1007/978-3-030-47426-3_36 |
Ejemplares similares
-
Based on the multi-scale information sharing network of fine-grained attention for agricultural pest detection
por: Linfeng, Wang, et al.
Publicado: (2023) -
Multi-Contextual Segregation and Environmental Justice Research: Toward Fine-Scale Spatiotemporal Approaches
por: Park, Yoo Min, et al.
Publicado: (2017) -
Fine-grained classification based on multi-scale pyramid convolution networks
por: Wang, Gaihua, et al.
Publicado: (2021) -
CMM-Net: Contextual multi-scale multi-level network for efficient biomedical image segmentation
por: Al-masni, Mohammed A., et al.
Publicado: (2021) -
Fast Attention CNN for Fine-Grained Crack Segmentation
por: Lee, Hyunnam, et al.
Publicado: (2023)