Cargando…
Correlation-Aware Deep Generative Model for Unsupervised Anomaly Detection
Unsupervised anomaly detection aims to identify anomalous samples from highly complex and unstructured data, which is pervasive in both fundamental research and industrial applications. However, most existing methods neglect the complex correlation among data samples, which is important for capturin...
Autores principales: | Fan, Haoyi, Zhang, Fengbin, Wang, Ruidong, Xi, Liang, Li, Zuoyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206313/ http://dx.doi.org/10.1007/978-3-030-47436-2_52 |
Ejemplares similares
-
Unsupervised Deep Anomaly Detection in Chest Radiographs
por: Nakao, Takahiro, et al.
Publicado: (2021) -
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
An Unsupervised Deep Hyperspectral Anomaly Detector
por: Ma, Ning, et al.
Publicado: (2018) -
Graph Regularized Deep Sparse Representation for Unsupervised Anomaly Detection
por: Li, Shicheng, et al.
Publicado: (2021) -
Unsupervised, low latency anomaly detection of algorithmically generated domain names by generative probabilistic modeling
por: Raghuram, Jayaram, et al.
Publicado: (2014)