Cargando…

Data Centers Job Scheduling with Deep Reinforcement Learning

Efficient job scheduling on data centers under heterogeneous complexity is crucial but challenging since it involves the allocation of multi-dimensional resources over time and space. To adapt the complex computing environment in data centers, we proposed an innovative Advantage Actor-Critic (A2C) d...

Descripción completa

Detalles Bibliográficos
Autores principales: Liang, Sisheng, Yang, Zhou, Jin, Fang, Chen, Yong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206316/
http://dx.doi.org/10.1007/978-3-030-47436-2_68
Descripción
Sumario:Efficient job scheduling on data centers under heterogeneous complexity is crucial but challenging since it involves the allocation of multi-dimensional resources over time and space. To adapt the complex computing environment in data centers, we proposed an innovative Advantage Actor-Critic (A2C) deep reinforcement learning based approach called A2cScheduler for job scheduling. A2cScheduler consists of two agents, one of which, dubbed the actor, is responsible for learning the scheduling policy automatically and the other one, the critic, reduces the estimation error. Unlike previous policy gradient approaches, A2cScheduler is designed to reduce the gradient estimation variance and to update parameters efficiently. We show that the A2cScheduler can achieve competitive scheduling performance using both simulated workloads and real data collected from an academic data center.