Cargando…
Data Centers Job Scheduling with Deep Reinforcement Learning
Efficient job scheduling on data centers under heterogeneous complexity is crucial but challenging since it involves the allocation of multi-dimensional resources over time and space. To adapt the complex computing environment in data centers, we proposed an innovative Advantage Actor-Critic (A2C) d...
Autores principales: | Liang, Sisheng, Yang, Zhou, Jin, Fang, Chen, Yong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206316/ http://dx.doi.org/10.1007/978-3-030-47436-2_68 |
Ejemplares similares
-
Scheduling multi-task jobs with extra utility in data centers
por: Fang, Xiaolin, et al.
Publicado: (2017) -
Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
por: Sheng, Shuran, et al.
Publicado: (2021) -
Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling
por: Yuan, Yunmei, et al.
Publicado: (2021) -
Intelligent Decision-Making of Scheduling for Dynamic Permutation Flowshop via Deep Reinforcement Learning
por: Yang, Shengluo, et al.
Publicado: (2021) -
Improving Emergency Department Efficiency by Patient Scheduling Using Deep Reinforcement Learning
por: Lee, Seunghoon, et al.
Publicado: (2020)