Cargando…
PhosTransfer: A Deep Transfer Learning Framework for Kinase-Specific Phosphorylation Site Prediction in Hierarchy
Machine learning algorithms have been widely used for predicting kinase-specific phosphorylation sites. However, the scarcity of training data for specific kinases makes it difficult to train effective models for predicting their phosphorylation sites. In this paper, we propose a deep transfer learn...
Autores principales: | Xu, Ying, Wilson, Campbell, Leier, André, Marquez-Lago, Tatiana T., Whisstock, James, Song, Jiangning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206318/ http://dx.doi.org/10.1007/978-3-030-47436-2_29 |
Ejemplares similares
-
PhosContext2vec: a distributed representation of residue-level sequence contexts and its application to general and kinase-specific phosphorylation site prediction
por: Xu, Ying, et al.
Publicado: (2018) -
Knowledge-transfer learning for prediction of matrix metalloprotease substrate-cleavage sites
por: Wang, Yanan, et al.
Publicado: (2017) -
PhosphoPredict: A bioinformatics tool for prediction of human kinase-specific phosphorylation substrates and sites by integrating heterogeneous feature selection
por: Song, Jiangning, et al.
Publicado: (2017) -
PhosPhAt goes kinases—searchable protein kinase target information in the plant phosphorylation site database PhosPhAt
por: Zulawski, Monika, et al.
Publicado: (2013) -
PredPhos: an ensemble framework for structure-based prediction of phosphorylation sites
por: Gao, Yong, et al.
Publicado: (2016)