Cargando…
Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil
BACKGROUND: The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. Therefore, the qua...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206673/ https://www.ncbi.nlm.nih.gov/pubmed/32411370 http://dx.doi.org/10.1186/s40104-020-00451-4 |
_version_ | 1783530456458723328 |
---|---|
author | Yuan, Jieyao Kerr, Brian J. Curry, Shelby M. Chen, Chi |
author_facet | Yuan, Jieyao Kerr, Brian J. Curry, Shelby M. Chen, Chi |
author_sort | Yuan, Jieyao |
collection | PubMed |
description | BACKGROUND: The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. Therefore, the quality markers that predict growth performance could be useful when feeding oxidized oils to non-ruminants. However, the correlations between growth performance and chemical profiles of oxidized oils have not been well examined. In this study, six thermally oxidized soybean oils (OSOs) with a wide range of quality measures were prepared under different processing temperatures and processing durations, including 45 °C-336 h; 67.5 °C-168 h; 90 °C-84 h; 135 °C-42 h; 180 °C-21 h; and 225 °C-10.5 h. Broilers and nursery pigs were randomly assigned to diets containing either unheated control soybean oil or one of six OSOs. Animal performance was determined by measuring body weight gain, feed intake, and gain to feed ratio. The chemical profiles of OSOs were first evaluated by common indicative tests, including peroxide value, thiobarbituric acid reactive substances, p-anisidine value, free fatty acids, oxidized fatty acids, unsaponifiable matter, insoluble impurities, and moisture, and then analyzed by the liquid chromatography-mass spectrometry-based chemometric analysis. RESULTS: Among common quality indicators, p-anisidine value (AnV), which reflects the level of carbonyl compounds, had the greatest inverse correlation with the growth performance of both broilers and pigs, followed by free fatty acids and oxidized fatty acids. Among the 17 aldehydes identified in OSOs, C9-C11 alkenals, especially 2-decenal and 2-undecenal, had stronger inverse correlations (r < − 0.8) with animal performance compared to C5-C8 saturated alkanals, suggesting that chain length and unsaturation level affect the toxicity of aldehydes. CONCLUSIONS: As the major lipid oxidation products contributing to the AnV, individual C9-C11 unsaturated aldehydes in heavily-oxidized oils could function as effective prediction markers of growth and feed intake in feeding non-ruminants. |
format | Online Article Text |
id | pubmed-7206673 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-72066732020-05-14 Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil Yuan, Jieyao Kerr, Brian J. Curry, Shelby M. Chen, Chi J Anim Sci Biotechnol Research BACKGROUND: The benefits of using the oxidized oils from rendering and recycling as an economic source of lipids and energy in animal feed always coexist with the concerns that diverse degradation products in these oxidized oils can negatively affect animal health and performance. Therefore, the quality markers that predict growth performance could be useful when feeding oxidized oils to non-ruminants. However, the correlations between growth performance and chemical profiles of oxidized oils have not been well examined. In this study, six thermally oxidized soybean oils (OSOs) with a wide range of quality measures were prepared under different processing temperatures and processing durations, including 45 °C-336 h; 67.5 °C-168 h; 90 °C-84 h; 135 °C-42 h; 180 °C-21 h; and 225 °C-10.5 h. Broilers and nursery pigs were randomly assigned to diets containing either unheated control soybean oil or one of six OSOs. Animal performance was determined by measuring body weight gain, feed intake, and gain to feed ratio. The chemical profiles of OSOs were first evaluated by common indicative tests, including peroxide value, thiobarbituric acid reactive substances, p-anisidine value, free fatty acids, oxidized fatty acids, unsaponifiable matter, insoluble impurities, and moisture, and then analyzed by the liquid chromatography-mass spectrometry-based chemometric analysis. RESULTS: Among common quality indicators, p-anisidine value (AnV), which reflects the level of carbonyl compounds, had the greatest inverse correlation with the growth performance of both broilers and pigs, followed by free fatty acids and oxidized fatty acids. Among the 17 aldehydes identified in OSOs, C9-C11 alkenals, especially 2-decenal and 2-undecenal, had stronger inverse correlations (r < − 0.8) with animal performance compared to C5-C8 saturated alkanals, suggesting that chain length and unsaturation level affect the toxicity of aldehydes. CONCLUSIONS: As the major lipid oxidation products contributing to the AnV, individual C9-C11 unsaturated aldehydes in heavily-oxidized oils could function as effective prediction markers of growth and feed intake in feeding non-ruminants. BioMed Central 2020-05-08 /pmc/articles/PMC7206673/ /pubmed/32411370 http://dx.doi.org/10.1186/s40104-020-00451-4 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Yuan, Jieyao Kerr, Brian J. Curry, Shelby M. Chen, Chi Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title | Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title_full | Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title_fullStr | Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title_full_unstemmed | Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title_short | Identification of C9-C11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
title_sort | identification of c9-c11 unsaturated aldehydes as prediction markers of growth and feed intake for non-ruminant animals fed oxidized soybean oil |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7206673/ https://www.ncbi.nlm.nih.gov/pubmed/32411370 http://dx.doi.org/10.1186/s40104-020-00451-4 |
work_keys_str_mv | AT yuanjieyao identificationofc9c11unsaturatedaldehydesaspredictionmarkersofgrowthandfeedintakefornonruminantanimalsfedoxidizedsoybeanoil AT kerrbrianj identificationofc9c11unsaturatedaldehydesaspredictionmarkersofgrowthandfeedintakefornonruminantanimalsfedoxidizedsoybeanoil AT curryshelbym identificationofc9c11unsaturatedaldehydesaspredictionmarkersofgrowthandfeedintakefornonruminantanimalsfedoxidizedsoybeanoil AT chenchi identificationofc9c11unsaturatedaldehydesaspredictionmarkersofgrowthandfeedintakefornonruminantanimalsfedoxidizedsoybeanoil |