Cargando…
MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes
Proinflammatory cytokines induce ubiquitin-proteasome-dependent proteolysis by activating intracellular factors in skeletal muscle, leading to muscle atrophy. Therefore, we investigated the protective effect of Pyropia yezoensis crude protein (PYCP) on tumor necrosis factor (TNF)-α-induced muscle at...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207416/ http://dx.doi.org/10.1210/jendso/bvaa046.1221 |
_version_ | 1783530600123072512 |
---|---|
author | Lee, Min-Kyeong Taek-Jeong, Nam Choi, Youn Hee |
author_facet | Lee, Min-Kyeong Taek-Jeong, Nam Choi, Youn Hee |
author_sort | Lee, Min-Kyeong |
collection | PubMed |
description | Proinflammatory cytokines induce ubiquitin-proteasome-dependent proteolysis by activating intracellular factors in skeletal muscle, leading to muscle atrophy. Therefore, we investigated the protective effect of Pyropia yezoensis crude protein (PYCP) on tumor necrosis factor (TNF)-α-induced muscle atrophy in vitro. Mouse skeletal muscle C2C12 myotubes were treated for 48 h with TNF-α (20 ng/mL) in the presence or absence of PYCP (25, 50, and 100 μg/mL). PYCP at concentrations up to 100 μg/mL did not affect cell viability. Exposure to TNF-α for 48 h significantly decreased the diameter of myotubes, which was increased by treatment with 25, 50, and 100 μg/mL PYCP. PYCP inhibited TNF-α-induced intracellular reactive oxygen species accumulation in C2C12 myotubes. In addition, PYCP significantly reduced the levels of phosphorylated p38 and JNK. Moreover, by inhibiting the degradation of inhibitor of kappaB-α, PYCP significantly suppressed the TNF-α-induced increased transcriptional activity and nuclear translocation of nuclear factor-kappaB (NF-κB). Furthermore, PYCP inhibited E3-ubiquitin ligases in TNF-α-treated C2C12 myotubes. In conclusion, PYCP ameliorated TNF-α-induced muscle atrophy by inhibiting the mitogen-activated protein kinase-mediated NF-κB pathway, indicating that it has therapeutic potential for related disorders. |
format | Online Article Text |
id | pubmed-7207416 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-72074162020-05-13 MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes Lee, Min-Kyeong Taek-Jeong, Nam Choi, Youn Hee J Endocr Soc Genetics and Development (including Gene Regulation) Proinflammatory cytokines induce ubiquitin-proteasome-dependent proteolysis by activating intracellular factors in skeletal muscle, leading to muscle atrophy. Therefore, we investigated the protective effect of Pyropia yezoensis crude protein (PYCP) on tumor necrosis factor (TNF)-α-induced muscle atrophy in vitro. Mouse skeletal muscle C2C12 myotubes were treated for 48 h with TNF-α (20 ng/mL) in the presence or absence of PYCP (25, 50, and 100 μg/mL). PYCP at concentrations up to 100 μg/mL did not affect cell viability. Exposure to TNF-α for 48 h significantly decreased the diameter of myotubes, which was increased by treatment with 25, 50, and 100 μg/mL PYCP. PYCP inhibited TNF-α-induced intracellular reactive oxygen species accumulation in C2C12 myotubes. In addition, PYCP significantly reduced the levels of phosphorylated p38 and JNK. Moreover, by inhibiting the degradation of inhibitor of kappaB-α, PYCP significantly suppressed the TNF-α-induced increased transcriptional activity and nuclear translocation of nuclear factor-kappaB (NF-κB). Furthermore, PYCP inhibited E3-ubiquitin ligases in TNF-α-treated C2C12 myotubes. In conclusion, PYCP ameliorated TNF-α-induced muscle atrophy by inhibiting the mitogen-activated protein kinase-mediated NF-κB pathway, indicating that it has therapeutic potential for related disorders. Oxford University Press 2020-05-08 /pmc/articles/PMC7207416/ http://dx.doi.org/10.1210/jendso/bvaa046.1221 Text en © Endocrine Society 2020. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Genetics and Development (including Gene Regulation) Lee, Min-Kyeong Taek-Jeong, Nam Choi, Youn Hee MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title | MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title_full | MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title_fullStr | MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title_full_unstemmed | MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title_short | MON-721 Crude Protein of Pyropia Yezoensis Protects Against Tumor Necrosis Factor-á-Induced Myotube Atrophy by Regulating the Mitogen-Activated Protein Kinase and Nuclear Factor-Kappab Signaling Pathways in C2C12 Myotubes |
title_sort | mon-721 crude protein of pyropia yezoensis protects against tumor necrosis factor-á-induced myotube atrophy by regulating the mitogen-activated protein kinase and nuclear factor-kappab signaling pathways in c2c12 myotubes |
topic | Genetics and Development (including Gene Regulation) |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7207416/ http://dx.doi.org/10.1210/jendso/bvaa046.1221 |
work_keys_str_mv | AT leeminkyeong mon721crudeproteinofpyropiayezoensisprotectsagainsttumornecrosisfactorainducedmyotubeatrophybyregulatingthemitogenactivatedproteinkinaseandnuclearfactorkappabsignalingpathwaysinc2c12myotubes AT taekjeongnam mon721crudeproteinofpyropiayezoensisprotectsagainsttumornecrosisfactorainducedmyotubeatrophybyregulatingthemitogenactivatedproteinkinaseandnuclearfactorkappabsignalingpathwaysinc2c12myotubes AT choiyounhee mon721crudeproteinofpyropiayezoensisprotectsagainsttumornecrosisfactorainducedmyotubeatrophybyregulatingthemitogenactivatedproteinkinaseandnuclearfactorkappabsignalingpathwaysinc2c12myotubes |