Cargando…

SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation

Pituitary adenylate cyclase-activating polypeptide (PACAP) is being studied to understand the endocrine regulation of energy balance and has been shown to be important in the regulation of the stress response (1,2). Specifically, PACAP has been shown to regulate thermogenesis, an energy burning proc...

Descripción completa

Detalles Bibliográficos
Autores principales: Pandher, Parleen K, Filatov, Ekaterina, Gray, Sarah L
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208660/
http://dx.doi.org/10.1210/jendso/bvaa046.928
_version_ 1783530897762418688
author Pandher, Parleen K
Filatov, Ekaterina
Gray, Sarah L
author_facet Pandher, Parleen K
Filatov, Ekaterina
Gray, Sarah L
author_sort Pandher, Parleen K
collection PubMed
description Pituitary adenylate cyclase-activating polypeptide (PACAP) is being studied to understand the endocrine regulation of energy balance and has been shown to be important in the regulation of the stress response (1,2). Specifically, PACAP has been shown to regulate thermogenesis, an energy burning process regulated by the sympathetic nervous system that contributes to achieving energy homeostasis in response to cold stress and overfeeding. PACAP is expressed in the sympathetic nervous system and is required at the adrenomedullary synapse to maintain epinephrine secretion from the adrenal medulla in response to physiological stress (3). Across the branches of the sympathetic nervous system, PACAP receptor expression is most well characterized in the superior cervical ganglia (SCG) (4). However, a detailed characterization of PACAP and its receptors has not been performed in ganglia whose postganglionic fibres innervate adipose tissues (stellate and celiac ganglia) in response to thermogenic stress. We hypothesized that PACAP is produced by preganglionic neurons innervating the stellate and celiac ganglia, and act on PACAP receptors expressed on the post-ganglionic neurons, and this expression will be upregulated in response to chronic cold stress. Due to their small and amorphous shape, we have developed a protocol to reliably isolate the stellate and celiac ganglia and validate their identity through the presence of tyrosine hydroxylase mRNA, using adrenal and SCG samples as positive controls. PACAP receptor expression (VPAC1, VPAC2, PAC1) was examined in the ganglia utilizing real-time PCR, and PACAP protein was visualized in the ganglia of transgenic mice that express eGFP under the control of the PACAP promoter (PACAP-eGFP mice) (5). This research demonstrates the expression of PACAP receptors in ganglia whose postganglionic fibres innervate adipose tissue, enhancing our understanding of PACAP’s role in the SNS, and its contribution to the regulation of adaptive thermogenesis. References: (1) Gray et al., Pacap: Regulator of the stress response. In: Fink G, ed. Stress: Physiology, biochemistry, and pathology. 2019:279-291. (2) Mustafa, Adv Pharmacol. San Diego, Calif:445-457. (3) Eiden et al., Pflungers Arch. 2018 Jan;470(1):79-88. (4) Braas et al., J Biol Chem. 1999 Sep 24;274(39):27702-27710. (5) Condro et al., J Comp Neurol. 2016 Dec 15; 524(18):3827-3848.
format Online
Article
Text
id pubmed-7208660
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-72086602020-05-13 SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation Pandher, Parleen K Filatov, Ekaterina Gray, Sarah L J Endocr Soc Adipose Tissue, Appetite, and Obesity Pituitary adenylate cyclase-activating polypeptide (PACAP) is being studied to understand the endocrine regulation of energy balance and has been shown to be important in the regulation of the stress response (1,2). Specifically, PACAP has been shown to regulate thermogenesis, an energy burning process regulated by the sympathetic nervous system that contributes to achieving energy homeostasis in response to cold stress and overfeeding. PACAP is expressed in the sympathetic nervous system and is required at the adrenomedullary synapse to maintain epinephrine secretion from the adrenal medulla in response to physiological stress (3). Across the branches of the sympathetic nervous system, PACAP receptor expression is most well characterized in the superior cervical ganglia (SCG) (4). However, a detailed characterization of PACAP and its receptors has not been performed in ganglia whose postganglionic fibres innervate adipose tissues (stellate and celiac ganglia) in response to thermogenic stress. We hypothesized that PACAP is produced by preganglionic neurons innervating the stellate and celiac ganglia, and act on PACAP receptors expressed on the post-ganglionic neurons, and this expression will be upregulated in response to chronic cold stress. Due to their small and amorphous shape, we have developed a protocol to reliably isolate the stellate and celiac ganglia and validate their identity through the presence of tyrosine hydroxylase mRNA, using adrenal and SCG samples as positive controls. PACAP receptor expression (VPAC1, VPAC2, PAC1) was examined in the ganglia utilizing real-time PCR, and PACAP protein was visualized in the ganglia of transgenic mice that express eGFP under the control of the PACAP promoter (PACAP-eGFP mice) (5). This research demonstrates the expression of PACAP receptors in ganglia whose postganglionic fibres innervate adipose tissue, enhancing our understanding of PACAP’s role in the SNS, and its contribution to the regulation of adaptive thermogenesis. References: (1) Gray et al., Pacap: Regulator of the stress response. In: Fink G, ed. Stress: Physiology, biochemistry, and pathology. 2019:279-291. (2) Mustafa, Adv Pharmacol. San Diego, Calif:445-457. (3) Eiden et al., Pflungers Arch. 2018 Jan;470(1):79-88. (4) Braas et al., J Biol Chem. 1999 Sep 24;274(39):27702-27710. (5) Condro et al., J Comp Neurol. 2016 Dec 15; 524(18):3827-3848. Oxford University Press 2020-05-08 /pmc/articles/PMC7208660/ http://dx.doi.org/10.1210/jendso/bvaa046.928 Text en © Endocrine Society 2020. http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
spellingShingle Adipose Tissue, Appetite, and Obesity
Pandher, Parleen K
Filatov, Ekaterina
Gray, Sarah L
SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title_full SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title_fullStr SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title_full_unstemmed SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title_short SAT-601 Development of a Protocol for Stellate and Celiac Ganglia Dissection for Characterization of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) Protein and Receptor Expression in Male and Female Mice Following Cold Acclimation
title_sort sat-601 development of a protocol for stellate and celiac ganglia dissection for characterization of pituitary adenylate cyclase activating polypeptide (pacap) protein and receptor expression in male and female mice following cold acclimation
topic Adipose Tissue, Appetite, and Obesity
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7208660/
http://dx.doi.org/10.1210/jendso/bvaa046.928
work_keys_str_mv AT pandherparleenk sat601developmentofaprotocolforstellateandceliacgangliadissectionforcharacterizationofpituitaryadenylatecyclaseactivatingpolypeptidepacapproteinandreceptorexpressioninmaleandfemalemicefollowingcoldacclimation
AT filatovekaterina sat601developmentofaprotocolforstellateandceliacgangliadissectionforcharacterizationofpituitaryadenylatecyclaseactivatingpolypeptidepacapproteinandreceptorexpressioninmaleandfemalemicefollowingcoldacclimation
AT graysarahl sat601developmentofaprotocolforstellateandceliacgangliadissectionforcharacterizationofpituitaryadenylatecyclaseactivatingpolypeptidepacapproteinandreceptorexpressioninmaleandfemalemicefollowingcoldacclimation