Cargando…

SAT-LB105 A Transcribed Ultraconserved Noncoding RNA, Uc.336-As, Promotes White to Brown Conversion in 3T3-L1 Cells

Brown adipose tissue (BAT) has gained its popularity since it shows great potential in counteracting obesity and metabolic diseases development. Transcribed ultraconserved regions (T-UCRs), a novel class of long non-coding RNA (lncRNAs), have been implicated in regulating diverse biological processe...

Descripción completa

Detalles Bibliográficos
Autores principales: He, Xiaoying, Xiang, Tao, Guan, Hongyu, Li, Yanbing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209049/
http://dx.doi.org/10.1210/jendso/bvaa046.2099
Descripción
Sumario:Brown adipose tissue (BAT) has gained its popularity since it shows great potential in counteracting obesity and metabolic diseases development. Transcribed ultraconserved regions (T-UCRs), a novel class of long non-coding RNA (lncRNAs), have been implicated in regulating diverse biological processes, including the process of white fat browning. However, the functional and mechanistic details of T-UCRs in the browning process are poorly understood. Here, we identified that a T-UCR, uc.336-as, played an important role during the browning process. Uc.336-as was significantly elevated during browning process induced by glucagon-like peptide-1 receptor agonist (exendin-4) or β3-adrenergic agonist (CL316,243). Overexpression of uc.336-as reduces the differentiation of 3T3-L1 preadipocytes into white adipocytes (inhibited lipid accumulation and decreased the expression of several adipogenesis markers) and induces brown characteristics during differentiation of 3T3-L1 preadipocytes (spurred browning adipocytes phenotypes and increased the expression of the browning associated genes). Moreover, we found that uc.336-as inhibited adipogenesis and promoted browning process via influencing the serine/threonine kinase (AKT)-mammalian target of rapamycin (mTOR) axis, an essential signal pathway in adipocyte metabolism. Taken together, our data show that uc.336-as acts as a negative regulator in white adipocyte differentiation and promotes the browning process, suggesting a potential therapeutic role for uc.336-as in controlling obesity.