Cargando…
SAT-LB111 Improving Classification of Diabetes Etiology in Electronic Resources Using Phenotype Algorithms and Polygenic Risk Scores
Electronic Health Records (EHR) contain rich data to identify and study diabetes. Many phenotype algorithms have been developed to identify research subjects with type 2 diabetes (T2D), but very few accurately identify type 1 diabetes (T1D) cases or more rare forms of monogenic and atypical metaboli...
Autores principales: | Sulieman, Lina, He, Jing, Carroll, Robert, Bastarache, Lisa, Ramirez, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209076/ http://dx.doi.org/10.1210/jendso/bvaa046.2239 |
Ejemplares similares
-
SAT-LB110 Sulfonylurea-Induced Hypoglycemia: To Use Octreotide or Not
por: Romeu, Jose, et al.
Publicado: (2020) -
SAT-LB027 Does Diabetes Education Influence Glycosylated Hemoglobin?
por: Bhargava, Pooja, et al.
Publicado: (2019) -
SAT-LB127 Regulation of ENaC by Exosomal Lipids in the Diabetic Kidney
por: Tuna, Kubra M, et al.
Publicado: (2020) -
SAT-LB118 Euglycemic Diabetic Ketoacidosis in Type 2 Diabetes Mellitus
por: Arao, Kevin A, et al.
Publicado: (2020) -
SAT-LB124 Phosphatidylcholine Transfer Protein Interacts With PPARδ to Modulate Activity
por: Druzak, Samuel Adam, et al.
Publicado: (2020)