Cargando…
Predicting cell lineages using autoencoders and optimal transport
Lineage tracing involves the identification of all ancestors and descendants of a given cell, and is an important tool for studying biological processes such as development and disease progression. However, in many settings, controlled time-course experiments are not feasible, for example when worki...
Autores principales: | Yang, Karren Dai, Damodaran, Karthik, Venkatachalapathy, Saradha, Soylemezoglu, Ali C., Shivashankar, G. V., Uhler, Caroline |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209334/ https://www.ncbi.nlm.nih.gov/pubmed/32343706 http://dx.doi.org/10.1371/journal.pcbi.1007828 |
Ejemplares similares
-
Multi-domain translation between single-cell imaging and sequencing data using autoencoders
por: Yang, Karren Dai, et al.
Publicado: (2021) -
Machine Learning for Nuclear Mechano-Morphometric Biomarkers in Cancer Diagnosis
por: Radhakrishnan, Adityanarayanan, et al.
Publicado: (2017) -
Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription
por: Belyaeva, Anastasiya, et al.
Publicado: (2017) -
Compressive force induces reversible chromatin condensation and cell geometry–dependent transcriptional response
por: Damodaran, Karthik, et al.
Publicado: (2018) -
Graph-based autoencoder integrates spatial transcriptomics with chromatin images and identifies joint biomarkers for Alzheimer’s disease
por: Zhang, Xinyi, et al.
Publicado: (2022)