Cargando…

Effects of Fibroblast Growth Factor 2 on Burn Injury and Repair Process: Analysis Using a Refined Mouse Model

BACKGROUND: Burn injury is one of the most debilitating traumas, which induces multiple organ dysfunctions, resulting in high levels of morbidity and mortality. Fibroblast growth factor 2 (FGF2) has been applied to burn injury, whose precise mechanisms underlying facilitating the healing have not be...

Descripción completa

Detalles Bibliográficos
Autores principales: Hishida, Kensaku, Hatano, Sonoko, Furukawa, Hiroshi, Yokoo, Kazuhisa, Watanabe, Hideto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Wolters Kluwer Health 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209900/
https://www.ncbi.nlm.nih.gov/pubmed/32440425
http://dx.doi.org/10.1097/GOX.0000000000002757
Descripción
Sumario:BACKGROUND: Burn injury is one of the most debilitating traumas, which induces multiple organ dysfunctions, resulting in high levels of morbidity and mortality. Fibroblast growth factor 2 (FGF2) has been applied to burn injury, whose precise mechanisms underlying facilitating the healing have not been fully understood. Although various animal models have been developed in pigs, rabbits, rats, and mice, no mouse model that creates burns consistent in their extent and depth have not been developed. Here, we developed a mouse burn model, and investigated details of the burn process, and elucidated the mechanisms of FGF2 effects. METHODS: A device with an 8-mm metal probe and a temperature controller was developed, which controls the temperature of the probe. Using the device, 1 or 2 of full-thickness burn injuries were generated on the back under catagen/telogen of 6-month-old C57BL/6 male mice. After 24 hours, FGF2 or phosphate-buffered saline was injected into the injured region, and at days 3, 5, and 7, histological and immunohistochemical analysis was performed to observe the injury and repair process. RESULTS: The device constantly generated a mouse full-thickness burn injury. The repair was initiated on the bottom of the burn as well as the margin. Local treatment with FGF2 displayed higher levels of immunostaining for both CD31+ and alpha-smooth muscle actin. CONCLUSIONS: The device we developed is useful to generate a mouse burn injury model. FGF2 facilitates tissue repair with an increased number of both CD31+ and αSMA+ cells.