Cargando…

The specific biochemistry of human axilla odour formation viewed in an evolutionary context

Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the a...

Descripción completa

Detalles Bibliográficos
Autores principales: Natsch, Andreas, Emter, Roger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209930/
https://www.ncbi.nlm.nih.gov/pubmed/32306870
http://dx.doi.org/10.1098/rstb.2019.0269
_version_ 1783531185446584320
author Natsch, Andreas
Emter, Roger
author_facet Natsch, Andreas
Emter, Roger
author_sort Natsch, Andreas
collection PubMed
description Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the axillary microbiome. Key biochemical steps for the release of highly odouriferous carboxylic acids and sulfur compounds have been elucidated over the past 15 years. Based on the profound molecular understanding and specific analytical methods developed, evolutionary questions could be asked for the first time with small population studies: (i) a genetic basis for body odour could be shown with a twin study, (ii) no effect of genes in the human leukocyte antigen complex on the pattern of odourant carboxylic acid was found, and (iii) loss of odour precursor secretion by a mutation in the ABCC11 gene could explain why a large fraction of the population in the Far East lack body odour formation. This review summarizes what is currently known at the molecular level on the biochemistry of the formation of key odourants in the human axilla. At the same time, we present for the first time the crystal structure of the N(α)-acyl-aminoacylase, a key human odour-releasing enzyme, thus describing at the molecular level how bacteria on the skin surface have adapted their enzyme to the specific substrates secreted by the human host. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’.
format Online
Article
Text
id pubmed-7209930
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher The Royal Society
record_format MEDLINE/PubMed
spelling pubmed-72099302020-05-14 The specific biochemistry of human axilla odour formation viewed in an evolutionary context Natsch, Andreas Emter, Roger Philos Trans R Soc Lond B Biol Sci Articles Human body odour is dominated by the scent of specific odourants emanating from specialized glands in the axillary region. These specific odourants are produced by an intricate interplay between biochemical pathways in the host and odour-releasing enzymes present in commensal microorganisms of the axillary microbiome. Key biochemical steps for the release of highly odouriferous carboxylic acids and sulfur compounds have been elucidated over the past 15 years. Based on the profound molecular understanding and specific analytical methods developed, evolutionary questions could be asked for the first time with small population studies: (i) a genetic basis for body odour could be shown with a twin study, (ii) no effect of genes in the human leukocyte antigen complex on the pattern of odourant carboxylic acid was found, and (iii) loss of odour precursor secretion by a mutation in the ABCC11 gene could explain why a large fraction of the population in the Far East lack body odour formation. This review summarizes what is currently known at the molecular level on the biochemistry of the formation of key odourants in the human axilla. At the same time, we present for the first time the crystal structure of the N(α)-acyl-aminoacylase, a key human odour-releasing enzyme, thus describing at the molecular level how bacteria on the skin surface have adapted their enzyme to the specific substrates secreted by the human host. This article is part of the Theo Murphy meeting issue ‘Olfactory communication in humans’. The Royal Society 2020-06-08 2020-04-20 /pmc/articles/PMC7209930/ /pubmed/32306870 http://dx.doi.org/10.1098/rstb.2019.0269 Text en © 2020 The Authors. http://creativecommons.org/licenses/by/4.0/ Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
spellingShingle Articles
Natsch, Andreas
Emter, Roger
The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title_full The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title_fullStr The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title_full_unstemmed The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title_short The specific biochemistry of human axilla odour formation viewed in an evolutionary context
title_sort specific biochemistry of human axilla odour formation viewed in an evolutionary context
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7209930/
https://www.ncbi.nlm.nih.gov/pubmed/32306870
http://dx.doi.org/10.1098/rstb.2019.0269
work_keys_str_mv AT natschandreas thespecificbiochemistryofhumanaxillaodourformationviewedinanevolutionarycontext
AT emterroger thespecificbiochemistryofhumanaxillaodourformationviewedinanevolutionarycontext
AT natschandreas specificbiochemistryofhumanaxillaodourformationviewedinanevolutionarycontext
AT emterroger specificbiochemistryofhumanaxillaodourformationviewedinanevolutionarycontext