Cargando…
Deep learning for detecting corona virus disease 2019 (COVID-19) on high-resolution computed tomography: a pilot study
BACKGROUND: To evaluate the diagnostic efficacy of Densely Connected Convolutional Networks (DenseNet) for detection of COVID-19 features on high resolution computed tomography (HRCT). METHODS: The Ethic Committee of our institution approved the protocol of this study and waived the requirement for...
Autores principales: | Yang, Shuyi, Jiang, Longquan, Cao, Zhuoqun, Wang, Liya, Cao, Jiawang, Feng, Rui, Zhang, Zhiyong, Xue, Xiangyang, Shi, Yuxin, Shan, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210135/ https://www.ncbi.nlm.nih.gov/pubmed/32395494 http://dx.doi.org/10.21037/atm.2020.03.132 |
Ejemplares similares
-
Novel Corona Virus 2019 Disease: Assessment on High-Resolution Computed Tomography Thorax
por: Sakalecha, Anıl K, et al.
Publicado: (2023) -
A deep learning-based quantitative computed tomography model for predicting the severity of COVID-19: a retrospective study of 196 patients
por: Shi, Weiya, et al.
Publicado: (2021) -
Sensitivity and specificity of magnetic resonance imaging in routine diagnosis of pulmonary lesions: a comparison with computed tomography
por: Yang, Shuyi, et al.
Publicado: (2022) -
Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography
por: Chen, Jun, et al.
Publicado: (2020) -
Less is more in Corona Virus Disease 2019
por: Xu, Jingjing, et al.
Publicado: (2022)