Cargando…
Automatic classification of esophageal lesions in endoscopic images using a convolutional neural network
BACKGROUND: Using deep learning techniques in image analysis is a dynamically emerging field. This study aims to use a convolutional neural network (CNN), a deep learning approach, to automatically classify esophageal cancer (EC) and distinguish it from premalignant lesions. METHODS: A total of 1,27...
Autores principales: | Liu, Gaoshuang, Hua, Jie, Wu, Zhan, Meng, Tianfang, Sun, Mengxue, Huang, Peiyun, He, Xiaopu, Sun, Weihao, Li, Xueliang, Chen, Yang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210177/ https://www.ncbi.nlm.nih.gov/pubmed/32395530 http://dx.doi.org/10.21037/atm.2020.03.24 |
Ejemplares similares
-
Myrrh induces the apoptosis and inhibits the proliferation and migration of gastric cancer cells through down-regulating cyclooxygenase-2 expression
por: Sun, Mengxue, et al.
Publicado: (2020) -
Application of endoscopic ultrasonography for detecting esophageal lesions based on convolutional neural network
por: Liu, Gao-Shuang, et al.
Publicado: (2022) -
Automatic ECG Classification Using Continuous Wavelet Transform and Convolutional Neural Network
por: Wang, Tao, et al.
Publicado: (2021) -
Automatic Detection and Classification of Focal Liver Lesions Based on Deep Convolutional Neural Networks: A Preliminary Study
por: Zhou, Jiarong, et al.
Publicado: (2021) -
Optimization of convolutional neural network hyperparameters for automatic classification of adult mosquitoes
por: Motta, Daniel, et al.
Publicado: (2020)