Cargando…
Smoothness Parameter of Power of Euclidean Norm
In this paper, we study derivatives of powers of Euclidean norm. We prove their Hölder continuity and establish explicit expressions for the corresponding constants. We show that these constants are optimal for odd derivatives and at most two times suboptimal for the even ones. In the particular cas...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210250/ https://www.ncbi.nlm.nih.gov/pubmed/32421041 http://dx.doi.org/10.1007/s10957-020-01653-6 |
_version_ | 1783531245423034368 |
---|---|
author | Rodomanov, Anton Nesterov, Yurii |
author_facet | Rodomanov, Anton Nesterov, Yurii |
author_sort | Rodomanov, Anton |
collection | PubMed |
description | In this paper, we study derivatives of powers of Euclidean norm. We prove their Hölder continuity and establish explicit expressions for the corresponding constants. We show that these constants are optimal for odd derivatives and at most two times suboptimal for the even ones. In the particular case of integer powers, when the Hölder continuity transforms into the Lipschitz continuity, we improve this result and obtain the optimal constants. |
format | Online Article Text |
id | pubmed-7210250 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Springer US |
record_format | MEDLINE/PubMed |
spelling | pubmed-72102502020-05-13 Smoothness Parameter of Power of Euclidean Norm Rodomanov, Anton Nesterov, Yurii J Optim Theory Appl Article In this paper, we study derivatives of powers of Euclidean norm. We prove their Hölder continuity and establish explicit expressions for the corresponding constants. We show that these constants are optimal for odd derivatives and at most two times suboptimal for the even ones. In the particular case of integer powers, when the Hölder continuity transforms into the Lipschitz continuity, we improve this result and obtain the optimal constants. Springer US 2020-03-27 2020 /pmc/articles/PMC7210250/ /pubmed/32421041 http://dx.doi.org/10.1007/s10957-020-01653-6 Text en © The Author(s) 2020 Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Rodomanov, Anton Nesterov, Yurii Smoothness Parameter of Power of Euclidean Norm |
title | Smoothness Parameter of Power of Euclidean Norm |
title_full | Smoothness Parameter of Power of Euclidean Norm |
title_fullStr | Smoothness Parameter of Power of Euclidean Norm |
title_full_unstemmed | Smoothness Parameter of Power of Euclidean Norm |
title_short | Smoothness Parameter of Power of Euclidean Norm |
title_sort | smoothness parameter of power of euclidean norm |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210250/ https://www.ncbi.nlm.nih.gov/pubmed/32421041 http://dx.doi.org/10.1007/s10957-020-01653-6 |
work_keys_str_mv | AT rodomanovanton smoothnessparameterofpowerofeuclideannorm AT nesterovyurii smoothnessparameterofpowerofeuclideannorm |