Cargando…
MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway
Matrix Gla protein (MGP), an extracellular matrix protein, is mainly associated with the inhibition of calcification in skeleton, coronary artery, and kidney, and more recently it has also been implicated in cancer. However, the biological function of MGP inside cancer cells and its role in colon ca...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Gene & Cell Therapy
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210384/ https://www.ncbi.nlm.nih.gov/pubmed/32405535 http://dx.doi.org/10.1016/j.omto.2020.04.005 |
_version_ | 1783531263105171456 |
---|---|
author | Li, Xueqing Wei, Rui Wang, Mizhu Ma, Li Zhang, Zheng Chen, Lei Guo, Qingdong Guo, Shuilong Zhu, Shengtao Zhang, Shutian Min, Li |
author_facet | Li, Xueqing Wei, Rui Wang, Mizhu Ma, Li Zhang, Zheng Chen, Lei Guo, Qingdong Guo, Shuilong Zhu, Shengtao Zhang, Shutian Min, Li |
author_sort | Li, Xueqing |
collection | PubMed |
description | Matrix Gla protein (MGP), an extracellular matrix protein, is mainly associated with the inhibition of calcification in skeleton, coronary artery, and kidney, and more recently it has also been implicated in cancer. However, the biological function of MGP inside cancer cells and its role in colon cancer (CC) remain largely unknown. MGP expression and its association with clinicopathologic characteristics in CC were analyzed by immunohistochemistry and verified by Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. The effects of MGP on CC cell proliferation were evaluated via knockdown and overexpression experiments in vitro. Mechanisms of MGP in CC were explored by western blots, quantitative real-time PCR, Fluo-3 AM staining, Rhod-2 AM staining, immunofluorescence, and other techniques. Our study confirmed that MGP was upregulated in different stages of CC and associated with a worse prognosis. MGP could enrich intracellular free Ca(2+) concentration and promote nuclear factor κB (NF-κB)/p65 phosphorylation, activating the expression of c-MYC, ICAM-1, and VEGFA. Furthermore, the reduction of intracellular free Ca(2+) concentration and the subsequent growth inhibition effect on CC cells induced by small interfering RNA targeting MGP (siMGP) could be rescued by a higher calcium concentration environment. Therefore, MGP promotes the growth and proliferation of CC cells by enriching intracellular calcium concentration and activating the NF-κB pathway, and it could serve as a potential prognostic biomarker in CC patients. |
format | Online Article Text |
id | pubmed-7210384 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society of Gene & Cell Therapy |
record_format | MEDLINE/PubMed |
spelling | pubmed-72103842020-05-13 MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway Li, Xueqing Wei, Rui Wang, Mizhu Ma, Li Zhang, Zheng Chen, Lei Guo, Qingdong Guo, Shuilong Zhu, Shengtao Zhang, Shutian Min, Li Mol Ther Oncolytics Article Matrix Gla protein (MGP), an extracellular matrix protein, is mainly associated with the inhibition of calcification in skeleton, coronary artery, and kidney, and more recently it has also been implicated in cancer. However, the biological function of MGP inside cancer cells and its role in colon cancer (CC) remain largely unknown. MGP expression and its association with clinicopathologic characteristics in CC were analyzed by immunohistochemistry and verified by Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets. The effects of MGP on CC cell proliferation were evaluated via knockdown and overexpression experiments in vitro. Mechanisms of MGP in CC were explored by western blots, quantitative real-time PCR, Fluo-3 AM staining, Rhod-2 AM staining, immunofluorescence, and other techniques. Our study confirmed that MGP was upregulated in different stages of CC and associated with a worse prognosis. MGP could enrich intracellular free Ca(2+) concentration and promote nuclear factor κB (NF-κB)/p65 phosphorylation, activating the expression of c-MYC, ICAM-1, and VEGFA. Furthermore, the reduction of intracellular free Ca(2+) concentration and the subsequent growth inhibition effect on CC cells induced by small interfering RNA targeting MGP (siMGP) could be rescued by a higher calcium concentration environment. Therefore, MGP promotes the growth and proliferation of CC cells by enriching intracellular calcium concentration and activating the NF-κB pathway, and it could serve as a potential prognostic biomarker in CC patients. American Society of Gene & Cell Therapy 2020-04-19 /pmc/articles/PMC7210384/ /pubmed/32405535 http://dx.doi.org/10.1016/j.omto.2020.04.005 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Xueqing Wei, Rui Wang, Mizhu Ma, Li Zhang, Zheng Chen, Lei Guo, Qingdong Guo, Shuilong Zhu, Shengtao Zhang, Shutian Min, Li MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title | MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title_full | MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title_fullStr | MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title_full_unstemmed | MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title_short | MGP Promotes Colon Cancer Proliferation by Activating the NF-κB Pathway through Upregulation of the Calcium Signaling Pathway |
title_sort | mgp promotes colon cancer proliferation by activating the nf-κb pathway through upregulation of the calcium signaling pathway |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210384/ https://www.ncbi.nlm.nih.gov/pubmed/32405535 http://dx.doi.org/10.1016/j.omto.2020.04.005 |
work_keys_str_mv | AT lixueqing mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT weirui mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT wangmizhu mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT mali mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT zhangzheng mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT chenlei mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT guoqingdong mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT guoshuilong mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT zhushengtao mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT zhangshutian mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway AT minli mgppromotescoloncancerproliferationbyactivatingthenfkbpathwaythroughupregulationofthecalciumsignalingpathway |