Cargando…

Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11

OBJECTIVE: Maternal high-fat diet (HFD) has been shown to promote the development of insulin resistance (IR) in adult offspring; however, the underlying mechanisms remain unclear. METHODS: Eight-week-old female wild-type mice (C57BL/6) were fed either an HFD or a normal diet (ND), one week prior to...

Descripción completa

Detalles Bibliográficos
Autores principales: Wada, Naotoshi, Yamada, Hiroyuki, Motoyama, Shinichiro, Saburi, Makoto, Sugimoto, Takeshi, Kubota, Hiroshi, Miyawaki, Daisuke, Wakana, Noriyuki, Kami, Daisuke, Ogata, Takehiro, Matoba, Satoaki
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210595/
https://www.ncbi.nlm.nih.gov/pubmed/32272237
http://dx.doi.org/10.1016/j.molmet.2020.100988
_version_ 1783531306169139200
author Wada, Naotoshi
Yamada, Hiroyuki
Motoyama, Shinichiro
Saburi, Makoto
Sugimoto, Takeshi
Kubota, Hiroshi
Miyawaki, Daisuke
Wakana, Noriyuki
Kami, Daisuke
Ogata, Takehiro
Matoba, Satoaki
author_facet Wada, Naotoshi
Yamada, Hiroyuki
Motoyama, Shinichiro
Saburi, Makoto
Sugimoto, Takeshi
Kubota, Hiroshi
Miyawaki, Daisuke
Wakana, Noriyuki
Kami, Daisuke
Ogata, Takehiro
Matoba, Satoaki
author_sort Wada, Naotoshi
collection PubMed
description OBJECTIVE: Maternal high-fat diet (HFD) has been shown to promote the development of insulin resistance (IR) in adult offspring; however, the underlying mechanisms remain unclear. METHODS: Eight-week-old female wild-type mice (C57BL/6) were fed either an HFD or a normal diet (ND), one week prior to mating, and the diet was continued throughout gestation and lactation. Eight-week-old male offspring of both groups were fed an HFD for 8 weeks. RESULTS: Offspring of HFD-fed dams (O-HFD) exhibited significantly impaired insulin sensitivity compared with the offspring of ND-fed dams (O-ND). The adipocyte size of the eWAT increased significantly in O-HFD and was accompanied by abundant crown-like structures (CLSs), as well as a higher concentration of interleukin 1β (IL-1β) in the eWAT. Treatment with an inflammasome inhibitor, MCC950, completely abrogated the enhanced IR in O-HFD. However, ex vivo caspase-1 activity in eWAT revealed no difference between the two groups. In contrast, noncanonical inflammasome activation of caspase-11 was significantly augmented in O-HFD compared with O-ND, suggesting that membrane pore formation, but not cleavage of pro-IL-1β by caspase-1, is augmented in O-HFD. To examine the membrane pore formation, we performed metabolic activation of bone marrow-derived macrophages (BMDMs). The percentage of pore formation assessed by ethidium bromide staining was significantly higher in BMDMs of O-HFD, accompanied by an enhanced active caspase-11 expression. Consistently, the concentration of IL-1β in culture supernatants was significantly higher in the BMDMs from O-HFD than those from O-ND. CONCLUSIONS: These findings demonstrate that maternal HFD exaggerates diet-induced IR in adult offspring by enhancing noncanonical caspase-11-mediated inflammasome activation.
format Online
Article
Text
id pubmed-7210595
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-72105952020-05-13 Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11 Wada, Naotoshi Yamada, Hiroyuki Motoyama, Shinichiro Saburi, Makoto Sugimoto, Takeshi Kubota, Hiroshi Miyawaki, Daisuke Wakana, Noriyuki Kami, Daisuke Ogata, Takehiro Matoba, Satoaki Mol Metab Original Article OBJECTIVE: Maternal high-fat diet (HFD) has been shown to promote the development of insulin resistance (IR) in adult offspring; however, the underlying mechanisms remain unclear. METHODS: Eight-week-old female wild-type mice (C57BL/6) were fed either an HFD or a normal diet (ND), one week prior to mating, and the diet was continued throughout gestation and lactation. Eight-week-old male offspring of both groups were fed an HFD for 8 weeks. RESULTS: Offspring of HFD-fed dams (O-HFD) exhibited significantly impaired insulin sensitivity compared with the offspring of ND-fed dams (O-ND). The adipocyte size of the eWAT increased significantly in O-HFD and was accompanied by abundant crown-like structures (CLSs), as well as a higher concentration of interleukin 1β (IL-1β) in the eWAT. Treatment with an inflammasome inhibitor, MCC950, completely abrogated the enhanced IR in O-HFD. However, ex vivo caspase-1 activity in eWAT revealed no difference between the two groups. In contrast, noncanonical inflammasome activation of caspase-11 was significantly augmented in O-HFD compared with O-ND, suggesting that membrane pore formation, but not cleavage of pro-IL-1β by caspase-1, is augmented in O-HFD. To examine the membrane pore formation, we performed metabolic activation of bone marrow-derived macrophages (BMDMs). The percentage of pore formation assessed by ethidium bromide staining was significantly higher in BMDMs of O-HFD, accompanied by an enhanced active caspase-11 expression. Consistently, the concentration of IL-1β in culture supernatants was significantly higher in the BMDMs from O-HFD than those from O-ND. CONCLUSIONS: These findings demonstrate that maternal HFD exaggerates diet-induced IR in adult offspring by enhancing noncanonical caspase-11-mediated inflammasome activation. Elsevier 2020-04-06 /pmc/articles/PMC7210595/ /pubmed/32272237 http://dx.doi.org/10.1016/j.molmet.2020.100988 Text en © 2020 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Original Article
Wada, Naotoshi
Yamada, Hiroyuki
Motoyama, Shinichiro
Saburi, Makoto
Sugimoto, Takeshi
Kubota, Hiroshi
Miyawaki, Daisuke
Wakana, Noriyuki
Kami, Daisuke
Ogata, Takehiro
Matoba, Satoaki
Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title_full Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title_fullStr Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title_full_unstemmed Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title_short Maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
title_sort maternal high-fat diet exaggerates diet-induced insulin resistance in adult offspring by enhancing inflammasome activation through noncanonical pathway of caspase-11
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7210595/
https://www.ncbi.nlm.nih.gov/pubmed/32272237
http://dx.doi.org/10.1016/j.molmet.2020.100988
work_keys_str_mv AT wadanaotoshi maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT yamadahiroyuki maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT motoyamashinichiro maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT saburimakoto maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT sugimototakeshi maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT kubotahiroshi maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT miyawakidaisuke maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT wakananoriyuki maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT kamidaisuke maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT ogatatakehiro maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11
AT matobasatoaki maternalhighfatdietexaggeratesdietinducedinsulinresistanceinadultoffspringbyenhancinginflammasomeactivationthroughnoncanonicalpathwayofcaspase11