Cargando…
Do superspreaders generate new superspreaders? A hypothesis to explain the propagation pattern of COVID-19
The current global propagation of COVID-19 is heterogeneous, with slow transmission continuing in many countries and exponential propagation in others, where the time that it took for the explosive spread to begin varied greatly. It is proposed that this could be explained by cascading superspreadin...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211669/ https://www.ncbi.nlm.nih.gov/pubmed/32422375 http://dx.doi.org/10.1016/j.ijid.2020.05.025 |
Sumario: | The current global propagation of COVID-19 is heterogeneous, with slow transmission continuing in many countries and exponential propagation in others, where the time that it took for the explosive spread to begin varied greatly. It is proposed that this could be explained by cascading superspreading events, in which new infections caused by a superspreader are more likely to be highly infectious. The mechanism suggested for this is related to viral loads. Exposure to high viral loads may result in high-intensity infection, which exposes new cases to high viral loads. This notion is supported by experimental veterinary research. |
---|