Cargando…
Modelling and forecasting art movements with CGANs
Conditional generative adversarial networks (CGANs) are a recent and popular method for generating samples from a probability distribution conditioned on latent information. The latent information often comes in the form of a discrete label from a small set. We propose a novel method for training CG...
Autores principales: | Lisi, Edoardo, Malekzadeh, Mohammad, Haddadi, Hamed, Lau, F. Din-Houn, Flaxman, Seth |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211863/ https://www.ncbi.nlm.nih.gov/pubmed/32431867 http://dx.doi.org/10.1098/rsos.191569 |
Ejemplares similares
-
A robust maximum correntropy forecasting model for time series with outliers
por: Ren, Jing, et al.
Publicado: (2023) -
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
On the Improvement of Default Forecast Through Textual Analysis
por: Cerchiello, Paola, et al.
Publicado: (2020) -
Forecasting Quoted Depth With the Limit Order Book
por: Libman, Daniel, et al.
Publicado: (2021) -
A hybrid model of modal decomposition and gated recurrent units for short-term load forecasting
por: Wang, Chun-Hua, et al.
Publicado: (2023)