Cargando…
Improved surrogates in inertial confinement fusion with manifold and cycle consistencies
Neural networks have become the method of choice in surrogate modeling because of their ability to characterize arbitrary, high-dimensional functions in a data-driven fashion. This paper advocates for the training of surrogates that are 1) consistent with the physical manifold, resulting in physical...
Autores principales: | Anirudh, Rushil, Thiagarajan, Jayaraman J., Bremer, Peer-Timo, Spears, Brian K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7211929/ https://www.ncbi.nlm.nih.gov/pubmed/32312816 http://dx.doi.org/10.1073/pnas.1916634117 |
Ejemplares similares
-
Designing accurate emulators for scientific processes using calibration-driven deep models
por: Thiagarajan, Jayaraman J., et al.
Publicado: (2020) -
MARGIN: Uncovering Deep Neural Networks Using Graph Signal Analysis
por: Anirudh, Rushil, et al.
Publicado: (2021) -
An Introduction to Inertial Confinement Fusion
por: Pfalzner, Susanne
Publicado: (2006) -
On heavy ions accelerators for inertial confinement fusion
por: Rubbia, Carlo
Publicado: (1991) -
Conference on Drivers for Inertial Confinement Fusion : TMC
por: Collective
Publicado: (1992)