Cargando…
Predicting spatial and temporal variability in crop yields: an inter-comparison of machine learning, regression and process-based models
Pervious assessments of crop yield response to climate change are mainly aided with either process-based models or statistical models, with a focus on predicting the changes in average yields, whilst there is growing interest in yield variability and extremes. In this study, we simulate US maize yie...
Autores principales: | Leng, Guoyong, Hall, Jim W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212054/ https://www.ncbi.nlm.nih.gov/pubmed/32395176 http://dx.doi.org/10.1088/1748-9326/ab7b24 |
Ejemplares similares
-
Crop yield response to climate change varies with crop spatial distribution pattern
por: Leng, Guoyong, et al.
Publicado: (2017) -
Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future
por: Leng, Guoyong, et al.
Publicado: (2019) -
Drivers of within-field spatial and temporal variability of crop yield across the US Midwest
por: Maestrini, Bernardo, et al.
Publicado: (2018) -
The Role of Climate Covariability on Crop Yields in the Conterminous United States
por: Leng, Guoyong, et al.
Publicado: (2016) -
Principal component regression for crop yield estimation
por: Suryanarayana, T M V, et al.
Publicado: (2016)