Cargando…
An Adaptive Sparse Subspace Clustering for Cell Type Identification
The rapid development of single-cell transcriptome sequencing technology has provided us with a cell-level perspective to study biological problems. Identification of cell types is one of the fundamental issues in computational analysis of single-cell data. Due to the large amount of noise from sing...
Autores principales: | Zheng, Ruiqing, Liang, Zhenlan, Chen, Xiang, Tian, Yu, Cao, Chen, Li, Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212354/ https://www.ncbi.nlm.nih.gov/pubmed/32425984 http://dx.doi.org/10.3389/fgene.2020.00407 |
Ejemplares similares
-
SSRE: Cell Type Detection Based on Sparse Subspace Representation and Similarity Enhancement
por: Liang, Zhenlan, et al.
Publicado: (2021) -
A self-training subspace clustering algorithm based on adaptive confidence for gene expression data
por: Li, Dan, et al.
Publicado: (2023) -
scDSSC: Deep Sparse Subspace Clustering for scRNA-seq Data
por: Wang, HaiYun, et al.
Publicado: (2022) -
Multimodal MRI Brain Tumor Image Segmentation Using Sparse Subspace Clustering Algorithm
por: Liu, Li, et al.
Publicado: (2020) -
Multi-view Subspace Clustering Analysis for Aggregating Multiple Heterogeneous Omics Data
por: Shi, Qianqian, et al.
Publicado: (2019)