Cargando…
Compressing gene expression data using multiple latent space dimensionalities learns complementary biological representations
BACKGROUND: Unsupervised compression algorithms applied to gene expression data extract latent or hidden signals representing technical and biological sources of variation. However, these algorithms require a user to select a biologically appropriate latent space dimensionality. In practice, most re...
Autores principales: | Way, Gregory P., Zietz, Michael, Rubinetti, Vincent, Himmelstein, Daniel S., Greene, Casey S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212571/ https://www.ncbi.nlm.nih.gov/pubmed/32393369 http://dx.doi.org/10.1186/s13059-020-02021-3 |
Ejemplares similares
-
Predictive learning as a network mechanism for extracting low-dimensional latent space representations
por: Recanatesi, Stefano, et al.
Publicado: (2021) -
Hetnet connectivity search provides rapid insights into how two biomedical entities are related
por: Himmelstein, Daniel S., et al.
Publicado: (2023) -
Hetnet connectivity search provides rapid insights into how biomedical entities are related
por: Himmelstein, Daniel S, et al.
Publicado: (2023) -
Open collaborative writing with Manubot
por: Himmelstein, Daniel S., et al.
Publicado: (2019) -
Latent representation learning in biology and translational medicine
por: Kopf, Andreas, et al.
Publicado: (2021)