Cargando…
T2/FLAIR-mismatch sign for noninvasive detection of IDH-mutant 1p/19q non-codeleted gliomas: validity and pathophysiology
BACKGROUND: This study aimed to assess the validity and pathophysiology of the T2/FLAIR-mismatch sign for noninvasive identification of isocitrate dehydrogenase (IDH)-mutant 1p/19q non-codeleted glioma. METHODS: Magnetic resonance imaging scans from 408 consecutive patients with newly diagnosed glio...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7212872/ https://www.ncbi.nlm.nih.gov/pubmed/32642675 http://dx.doi.org/10.1093/noajnl/vdaa004 |
Sumario: | BACKGROUND: This study aimed to assess the validity and pathophysiology of the T2/FLAIR-mismatch sign for noninvasive identification of isocitrate dehydrogenase (IDH)-mutant 1p/19q non-codeleted glioma. METHODS: Magnetic resonance imaging scans from 408 consecutive patients with newly diagnosed glioma (113 lower-grade gliomas and 295 glioblastomas) were evaluated for the presence of T2/FLAIR-mismatch sign by 2 independent reviewers. Sensitivity, specificity, accuracy, positive predictive value (PPV), and negative predictive value (NPV) were calculated to assess the performance of the T2/FLAIR-mismatch sign for identifying IDH-mutant 1p/19q non-codeleted tumors. An exploratory analysis of differences in contrast-enhancing tumor volumes, apparent diffusion coefficient (ADC) values, and relative cerebral blood volume (rCBV) values in IDH-mutant gliomas with versus without the presence of a T2/FLAIR-mismatch sign (as well as analysis of spatial differences within tumors with the presence of a T2/FLAIR-mismatch sign) was performed. RESULTS: The T2/FLAIR-mismatch sign was present in 12 cases with lower-grade glioma (10.6%), all of them being IDH-mutant 1p/19q non-codeleted tumors (sensitivity = 10.9%, specificity = 100%, PPV = 100%, NPV = 3.0%, accuracy = 13.3%). There was a substantial interrater agreement to identify the T2/FLAIR-mismatch sign (Cohen’s kappa = 0.75 [95% CI, 0.57–0.93]). The T2/FLAIR-mismatch sign was not identified in any other molecular subgroup, including IDH-mutant glioblastoma cases (n = 5). IDH-mutant gliomas with a T2/FLAIR-mismatch sign showed significantly higher ADC (P < .0001) and lower rCBV values (P = .0123) as compared to IDH-mutant gliomas without a T2/FLAIR-mismatch sign. Moreover, in IDH-mutant gliomas with T2/FLAIR-mismatch sign the ADC values were significantly lower in the FLAIR-hyperintense rim as compared to the FLAIR-hypointense core of the tumor (P = .0005). CONCLUSIONS: This study confirms the high specificity of the T2/FLAIR-mismatch sign for noninvasive identification of IDH-mutant 1p/19q non-codeleted gliomas; however, sensitivity is low and applicability is limited to lower-grade gliomas. Whether the higher ADC and lower rCBV values in IDH-mutant gliomas with a T2/FLAIR-mismatch sign (as compared to those without) translate into a measurable prognostic effect requires investigation in future studies. Moreover, spatial differences in ADC values between the core and rim of tumors with a T2/FLAIR-mismatch sign potentially reflect specific distinctions in tumor cellularity and microenvironment. |
---|