Cargando…
NI-07 VALIDATION OF MACHINE LEARNING BASED HIGH GRADE GLIOMA MR SEGMENTATION VIA METHIONINE PET
Treatment planning and lesion-follow up are generally conducted by contrast-enhanced MRI in glioma patient care. On the other hand, there are, however, substantial concerns whether MRI actually reflects the extension or activity of this neoplasm, which information should be fundamentally important a...
Autores principales: | Kinoshita, Manabu, Ozaki, Tomohiko, Arita, Hideyuki, Kagawa, Naoki, Kanemura, Yonehiro, Fujimoto, Yasunori, Sakai, Mio, Watanabe, Yoshiyuki, Nakanishi, Katsuyuki, Shimosegawa, Eku, Hatazawa, Jun, Kishima, Haruhiko |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213347/ http://dx.doi.org/10.1093/noajnl/vdz039.120 |
Ejemplares similares
-
Validation of magnetic resonance imaging-based automatic high-grade glioma segmentation accuracy via (11)C-methionine positron emission tomography
por: Ozaki, Tomohiko, et al.
Publicado: (2019) -
NI-3 Magnetic resonance relaxometry for tumor cell density imaging for glioma: An exploratory study via 11C-methionine PET and its validation via stereotactic tissue sampling
por: Kinoshita, Manabu, et al.
Publicado: (2021) -
Magnetic Resonance Relaxometry for Tumor Cell Density Imaging for Glioma: An Exploratory Study via (11)C-Methionine PET and Its Validation via Stereotactic Tissue Sampling
por: Kinoshita, Manabu, et al.
Publicado: (2021) -
NI-14 estimation of property of MRI non-contrast enhanced lesion of Glioblastoma using T1/T2 ratio
por: Yamamoto, Shota, et al.
Publicado: (2021) -
Prediction and Visualization of Non-Enhancing Tumor in Glioblastoma via T1w/T2w-Ratio Map
por: Yamamoto, Shota, et al.
Publicado: (2022)