Cargando…
BSCI-14. SYNTHETIC METASTATIC BRAIN DISEASE MRI IMAGES CREATED USING A GENERATIVE ADVERSARY NETWORK TO OVERCOME DEEP MACHINE LEARNING CHALLENGES IN HEALTHCARE
Deep Machine Learning (DML) in commercial applications such as recognizing animal species in photographs occurred through analyzing large volumes of public data. To achieve similar success in brain tumor imaging, additional factors must be addressed such as the need to follow strict regulatory proto...
Autores principales: | Dai, Zhenzhen, Snyder, James, Wen, Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213370/ http://dx.doi.org/10.1093/noajnl/vdz014.012 |
Ejemplares similares
-
BSCI
por: Shannon Michael J
Publicado: (2004) -
Generative Adversarial Networks for Creating Synthetic Nucleic Acid Sequences of Cat Genome
por: Hazra, Debapriya, et al.
Publicado: (2022) -
Exploiting the Generative Adversarial Network Approach to Create a Synthetic Topography Corneal Image
por: Jameel, Samer Kais, et al.
Publicado: (2022) -
BSCI-23. TISSUE FACTOR SIGNALING ENHANCES METASTATIC BRAIN CANCER MALIGNANCY
por: Unruh, Dusten, et al.
Publicado: (2019) -
BSCI-27. MELATONIN REDUCES MALIGNANCY OF BREAST CANCER BRAIN METASTATIC CELLS
por: Gil, Beatriz Fernandez, et al.
Publicado: (2019)