Cargando…
MLTI-05. IDENTIFYING BRAIN METASTATIC CASES FROM FREE TEXT CLINICAL NARRATIVES WITH REFINEMENT OF SEMANTIC HETEROGENEITY USING MACHINE LEARNING
INTRODUCTION: Brain metastatic disease (BM) is ripe for discovery using computational tools like machine learning (ML) due to disease complexity and multidimensional critical data (imaging, genomics, primary disease, drug exposures)(1). Leveraging real-world-evidence’ (RWE) from routine health data...
Autores principales: | Wells, Michael, Robin, Adam, Poisson, Laila, Noushmehr, Houtan, Snyder, James |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213474/ http://dx.doi.org/10.1093/noajnl/vdz014.064 |
Ejemplares similares
-
Expression and regulatory roles of lncRNAs in G-CIMP-low vs G-CIMP-high Glioma: an in-silico analysis
por: Datta, Indrani, et al.
Publicado: (2021) -
MLTI-05. Adjuvant re-irradiation improves local control of surgically resected recurrent brain metastases
por: Wilcox, Jessica, et al.
Publicado: (2021) -
Clinical and research applications of a brain tumor tissue bank in the age of precision medicine
por: Snyder, James, et al.
Publicado: (2019) -
MLTI-11. IMPLANTABLE POLYMERIC BCNU AS AN ADJUNCT TO SURGERY FOR METASTATIC INTRACRANIAL DISEASE
por: Ryken, Timothy, et al.
Publicado: (2019) -
Integration and publication of heterogeneous text-mined relationships on the Semantic Web
por: Coulet, Adrien, et al.
Publicado: (2011)