Cargando…

Root canal contamination or exposure to lipopolysaccharide differentially modulate prostaglandin E (2) and leukotriene B (4) signaling in apical periodontitis

PURPOSE: To evaluate the kinetics of apical periodontitis development in vivo , induced either by contamination of the root canals by microorganisms from the oral cavity or by inoculation of bacterial lipopolysaccharide (LPS) and the regulation of major enzymes and receptors involved in the arachido...

Descripción completa

Detalles Bibliográficos
Autores principales: PAULA-SILVA, Francisco Wanderley Garcia, RIBEIRO-SANTOS, Fernanda Regina, PETEAN, Igor Bassi Ferreira, MANFRIN ARNEZ, Maya Fernanda, de ALMEIDA-JUNIOR, Luciano Aparecido, de CARVALHO, Fabrício Kitazono, da SILVA, Léa Assed Bezerra, FACCIOLI, Lúcia Helena
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Faculdade De Odontologia De Bauru - USP 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7213784/
https://www.ncbi.nlm.nih.gov/pubmed/32401938
http://dx.doi.org/10.1590/1678-7757-2019-0699
Descripción
Sumario:PURPOSE: To evaluate the kinetics of apical periodontitis development in vivo , induced either by contamination of the root canals by microorganisms from the oral cavity or by inoculation of bacterial lipopolysaccharide (LPS) and the regulation of major enzymes and receptors involved in the arachidonic acid metabolism. METHODOLOGY: Apical periodontitis was induced in C57BL6 mice (n=96), by root canal exposure to oral cavity (n=48 teeth) or inoculation of LPS (10 µL of a suspension of 0.1 µg/µL) from E. coli into the root canals (n= 48 teeth). Healthy teeth were used as control (n=48 teeth). After 7, 14, 21 and 28 days the animals were euthanized and tissues removed for histopathological and qRT-PCR analyses. Histological analysis data were analyzed using two-way ANOVA followed by Sidak’s test, and qRT-PCR data using two-way ANOVA followed by Tukey’s test (α=0.05). RESULTS: Contamination by microorganisms led to the development of apical periodontitis, characterized by the recruitment of inflammatory cells and bone tissue resorption, whereas inoculation of LPS induced inflammatory cells recruitment without bone resorption. Both stimuli induced mRNA expression for cyclooxygenase-2 and 5-lipoxygenase enzymes. Expression of prostaglandin E (2) and leukotriene B (4) cell surface receptors were more stimulated by LPS. Regarding nuclear peroxisome proliferator-activated receptors (PPAR), oral contamination induced the synthesis of mRNA for PPARδ, differently from inoculation of LPS, that induced PPARα and PPARγ expression. CONCLUSIONS: Contamination of the root canals by microorganisms from oral cavity induced the development of apical periodontitis differently than by inoculation with LPS, characterized by less bone loss than the first model. Regardless of the model used, it was found a local increase in the synthesis of mRNA for the enzymes 5-lipoxygenase and cyclooxygenase-2 of the arachidonic acid metabolism, as well as in the surface and nuclear receptors for the lipid mediators prostaglandin E2 and leukotriene B4.