Cargando…
Coolpup.py: versatile pile-up analysis of Hi-C data
MOTIVATION: Hi-C is currently the method of choice to investigate the global 3D organization of the genome. A major limitation of Hi-C is the sequencing depth required to robustly detect loops in the data. A popular approach used to mitigate this issue, even in single-cell Hi-C data, is genome-wide...
Autores principales: | Flyamer, Ilya M, Illingworth, Robert S, Bickmore, Wendy A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214034/ https://www.ncbi.nlm.nih.gov/pubmed/32003791 http://dx.doi.org/10.1093/bioinformatics/btaa073 |
Ejemplares similares
-
A central role for canonical PRC1 in shaping the 3D nuclear landscape
por: Boyle, Shelagh, et al.
Publicado: (2020) -
HiCRep.py: fast comparison of Hi-C contact matrices in Python
por: Lin, Dejun, et al.
Publicado: (2021) -
Ultra-long-range interactions between active regulatory elements
por: Friman, Elias T., et al.
Publicado: (2023) -
From bedside to bench: regulation of host factors in SARS-CoV-2 infection
por: Ong, Samantha Y. Q., et al.
Publicado: (2021) -
Ribosomes pile up
por: LeBrasseur, Nicole
Publicado: (2002)