Cargando…
ColocML: machine learning quantifies co-localization between mass spectrometry images
MOTIVATION: Imaging mass spectrometry (imaging MS) is a prominent technique for capturing distributions of molecules in tissue sections. Various computational methods for imaging MS rely on quantifying spatial correlations between ion images, referred to as co-localization. However, no comprehensive...
Autores principales: | Ovchinnikova, Katja, Stuart, Lachlan, Rakhlin, Alexander, Nikolenko, Sergey, Alexandrov, Theodore |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214035/ https://www.ncbi.nlm.nih.gov/pubmed/32049317 http://dx.doi.org/10.1093/bioinformatics/btaa085 |
Ejemplares similares
-
OffsampleAI: artificial intelligence approach to recognize off-sample mass spectrometry images
por: Ovchinnikova, Katja, et al.
Publicado: (2020) -
DeepCycle reconstructs a cyclic cell cycle trajectory from unsegmented cell images using convolutional neural networks
por: Rappez, Luca, et al.
Publicado: (2020) -
Facilitating Imaging Mass Spectrometry of Microbial Specialized Metabolites with METASPACE
por: Nguyen, Don D., et al.
Publicado: (2021) -
Quantifying Colocalization: Thresholding, Void Voxels and the H(coef)
por: Adler, Jeremy, et al.
Publicado: (2014) -
Using collective expert judgements to evaluate quality measures of mass spectrometry images
por: Palmer, Andrew, et al.
Publicado: (2015)