Cargando…
Polar labeling: silver standard algorithm for training disease classifiers
MOTIVATION: Expert-labeled data are essential to train phenotyping algorithms for cohort identification. However expert labeling is time and labor intensive, and the costs remain prohibitive for scaling phenotyping to wider use-cases. RESULTS: We present an approach referred to as polar labeling (PL...
Autores principales: | Wagholikar, Kavishwar B, Estiri, Hossein, Murphy, Marykate, Murphy, Shawn N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214041/ https://www.ncbi.nlm.nih.gov/pubmed/32049335 http://dx.doi.org/10.1093/bioinformatics/btaa088 |
Ejemplares similares
-
Transitive Sequencing Medical Records for Mining Predictive and Interpretable Temporal Representations
por: Estiri, Hossein, et al.
Publicado: (2020) -
Predicting COVID-19 mortality with electronic medical records
por: Estiri, Hossein, et al.
Publicado: (2021) -
Feasibility of Homomorphic Encryption for Sharing I2B2 Aggregate-Level Data in the Cloud
por: Raisaro, Jean Louis, et al.
Publicado: (2018) -
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
por: Estiri, Hossein, et al.
Publicado: (2022) -
Implementation of informatics for integrating biology and the bedside (i2b2) platform as Docker containers
por: Wagholikar, Kavishwar B., et al.
Publicado: (2018)