Cargando…
GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation
MOTIVATION: Approximate Bayesian computation (ABC) is an important framework within which to infer the structure and parameters of a systems biology model. It is especially suitable for biological systems with stochastic and nonlinear dynamics, for which the likelihood functions are intractable. How...
Autores principales: | Tankhilevich, Evgeny, Ish-Horowicz, Jonathan, Hameed, Tara, Roesch, Elisabeth, Kleijn, Istvan, Stumpf, Michael P H, He, Fei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214045/ https://www.ncbi.nlm.nih.gov/pubmed/32022854 http://dx.doi.org/10.1093/bioinformatics/btaa078 |
Ejemplares similares
-
MomentClosure.jl: automated moment closure approximations in Julia
por: Sukys, Augustinas, et al.
Publicado: (2021) -
ABC-SysBio—approximate Bayesian computation in Python with GPU support
por: Liepe, Juliane, et al.
Publicado: (2010) -
HyperGraphs.jl: representing higher-order relationships in Julia
por: Diaz, Léo P M, et al.
Publicado: (2022) -
MEANS: python package for Moment Expansion Approximation, iNference and Simulation
por: Fan, Sisi, et al.
Publicado: (2016) -
DistributedFBA.jl: high-level, high-performance flux balance analysis in Julia
por: Heirendt, Laurent, et al.
Publicado: (2017)