Cargando…

Randomized resonant metamaterials for single-sensor identification of elastic vibrations

Vibrations carry a wealth of useful physical information in various fields. Identifying the multi-source vibration information generally requires a large number of sensors and complex hardware. Compressive sensing has been shown to be able to bypass the traditional sensing requirements by encoding s...

Descripción completa

Detalles Bibliográficos
Autores principales: Jiang, Tianxi, Li, Chong, He, Qingbo, Peng, Zhi-Ke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214442/
https://www.ncbi.nlm.nih.gov/pubmed/32393741
http://dx.doi.org/10.1038/s41467-020-15950-1
Descripción
Sumario:Vibrations carry a wealth of useful physical information in various fields. Identifying the multi-source vibration information generally requires a large number of sensors and complex hardware. Compressive sensing has been shown to be able to bypass the traditional sensing requirements by encoding spatial physical fields, but how to encode vibration information remains unexplored. Here we propose a randomized resonant metamaterial with randomly coupled local resonators for single-sensor compressed identification of elastic vibrations. The disordered effective masses of local resonators lead to highly uncorrelated vibration transmissions, and the spatial vibration information can thus be physically encoded. We demonstrate that the spatial vibration information can be reconstructed via a compressive sensing framework, and this metamaterial can be reconfigured while maintaining desirable performance. This randomized resonant metamaterial presents a new perspective for single-sensor vibration sensing via vibration transmission encoding, and potentially offers an approach to simpler sensing devices for many other physical information.