Cargando…
Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis
Single-cell RNA sequencing (scRNA-seq) can characterize cell types and states through unsupervised clustering, but the ever increasing number of cells and batch effect impose computational challenges. We present DESC, an unsupervised deep embedding algorithm that clusters scRNA-seq data by iterative...
Autores principales: | Li, Xiangjie, Wang, Kui, Lyu, Yafei, Pan, Huize, Zhang, Jingxiao, Stambolian, Dwight, Susztak, Katalin, Reilly, Muredach P., Hu, Gang, Li, Mingyao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214470/ https://www.ncbi.nlm.nih.gov/pubmed/32393754 http://dx.doi.org/10.1038/s41467-020-15851-3 |
Ejemplares similares
-
A joint deep learning model enables simultaneous batch effect correction, denoising, and clustering in single-cell transcriptomics
por: Lakkis, Justin, et al.
Publicado: (2021) -
Iterative transfer learning with neural network for clustering and cell type classification in single-cell RNA-seq analysis
por: Hu, Jian, et al.
Publicado: (2020) -
PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution
por: Hu, Yu, et al.
Publicado: (2014) -
Batch alignment of single-cell transcriptomics data using deep metric learning
por: Yu, Xiaokang, et al.
Publicado: (2023) -
ASEP: Gene-based detection of allele-specific expression across individuals in a population by RNA sequencing
por: Fan, Jiaxin, et al.
Publicado: (2020)