Cargando…
Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214478/ https://www.ncbi.nlm.nih.gov/pubmed/32267092 http://dx.doi.org/10.1111/mpp.12936 |
_version_ | 1783531980582813696 |
---|---|
author | Fan, Jiaqin Ma, Lin Zhao, Chendi Yan, Jingyuan Che, Shu Zhou, Zhaowei Wang, Huan Yang, Liuke Hu, Baishi |
author_facet | Fan, Jiaqin Ma, Lin Zhao, Chendi Yan, Jingyuan Che, Shu Zhou, Zhaowei Wang, Huan Yang, Liuke Hu, Baishi |
author_sort | Fan, Jiaqin |
collection | PubMed |
description | Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome‐wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA‐Seq analyses revealed that the differentially expressed genes (log(2)‐fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log(2)‐fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis‐related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work. |
format | Online Article Text |
id | pubmed-7214478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-72144782020-05-13 Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response Fan, Jiaqin Ma, Lin Zhao, Chendi Yan, Jingyuan Che, Shu Zhou, Zhaowei Wang, Huan Yang, Liuke Hu, Baishi Mol Plant Pathol Original Articles Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome‐wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA‐Seq analyses revealed that the differentially expressed genes (log(2)‐fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log(2)‐fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis‐related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work. John Wiley and Sons Inc. 2020-04-08 /pmc/articles/PMC7214478/ /pubmed/32267092 http://dx.doi.org/10.1111/mpp.12936 Text en © 2020 The Authors. Molecular Plant Pathology published by British Society for Plant Pathology and John Wiley & Sons Ltd This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Fan, Jiaqin Ma, Lin Zhao, Chendi Yan, Jingyuan Che, Shu Zhou, Zhaowei Wang, Huan Yang, Liuke Hu, Baishi Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title | Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title_full | Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title_fullStr | Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title_full_unstemmed | Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title_short | Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
title_sort | transcriptome of pectobacterium carotovorum subsp. carotovorum pccs1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214478/ https://www.ncbi.nlm.nih.gov/pubmed/32267092 http://dx.doi.org/10.1111/mpp.12936 |
work_keys_str_mv | AT fanjiaqin transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT malin transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT zhaochendi transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT yanjingyuan transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT cheshu transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT zhouzhaowei transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT wanghuan transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT yangliuke transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse AT hubaishi transcriptomeofpectobacteriumcarotovorumsubspcarotovorumpccs1infectedincallaplantsinvivohighlightsaspatiotemporalexpressionpatternofgenesrelatedtovirulenceadaptationandhostresponse |