Cargando…
Biases in health expectancies due to educational differences in survey participation of older Europeans: It’s worth weighting for
Health expectancies are widely used by policymakers and scholars to analyse the number of years a person can expect to live in good health. Their calculation requires life tables in combination with prevalence rates of good or bad health from survey data. The structure of typical survey data, howeve...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214500/ https://www.ncbi.nlm.nih.gov/pubmed/31989388 http://dx.doi.org/10.1007/s10198-019-01152-0 |
Sumario: | Health expectancies are widely used by policymakers and scholars to analyse the number of years a person can expect to live in good health. Their calculation requires life tables in combination with prevalence rates of good or bad health from survey data. The structure of typical survey data, however, rarely resembles the education distribution in the general population. Specifically, low-educated individuals are frequently underrepresented in surveys, which is crucial given the strong positive correlation between educational attainment and good health. This is the first study to evaluate if and how health expectancies for 13 European countries are biased by educational differences in survey participation. To this end, calibrated weights that consider the education structure in the 2011 censuses are applied to measures of activity limitation in the Survey of Health, Ageing and Retirement in Europe. The results show that health expectancies at age 50 are substantially biased by an average of 0.3 years when the education distribution in the general population is ignored. For most countries, health expectancies are overestimated; yet remarkably, the measure underestimates health for many Central and Eastern European countries by up to 0.9 years. These findings highlight the need to adjust for distortion in health expectancies, especially when the measure serves as a base for health-related policy targets or policy changes. |
---|