Cargando…
Linear and Non-linear Dimensionality-Reduction Techniques on Full Hand Kinematics
The purpose of this study was to find a parsimonious representation of hand kinematics data that could facilitate prosthetic hand control. Principal Component Analysis (PCA) and a non-linear Autoencoder Network (nAEN) were compared in their effectiveness at capturing the essential characteristics of...
Autores principales: | Portnova-Fahreeva, Alexandra A., Rizzoglio, Fabio, Nisky, Ilana, Casadio, Maura, Mussa-Ivaldi, Ferdinando A., Rombokas, Eric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214755/ https://www.ncbi.nlm.nih.gov/pubmed/32432105 http://dx.doi.org/10.3389/fbioe.2020.00429 |
Ejemplares similares
-
Learning to operate a high-dimensional hand via a low-dimensional controller
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2023) -
Autoencoder-based myoelectric controller for prosthetic hands
por: Portnova-Fahreeva, Alexandra A., et al.
Publicado: (2023) -
Dimensionality Reduction of Human Gait for Prosthetic Control
por: Boe, David, et al.
Publicado: (2021) -
A Non-Linear Body Machine Interface for Controlling Assistive Robotic Arms
por: Rizzoglio, Fabio, et al.
Publicado: (2023) -
Deep learning and session-specific rapid recalibration for dynamic hand gesture recognition from EMG
por: Karrenbach, Maxim, et al.
Publicado: (2022)