Cargando…
Efficient Processing of Spatio-Temporal Data Streams With Spiking Neural Networks
Spiking neural networks (SNNs) are potentially highly efficient models for inference on fully parallel neuromorphic hardware, but existing training methods that convert conventional artificial neural networks (ANNs) into SNNs are unable to exploit these advantages. Although ANN-to-SNN conversion has...
Autores principales: | Kugele, Alexander, Pfeil, Thomas, Pfeiffer, Michael, Chicca, Elisabetta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214871/ https://www.ncbi.nlm.nih.gov/pubmed/32431592 http://dx.doi.org/10.3389/fnins.2020.00439 |
Ejemplares similares
-
Efficient human activity recognition with spatio-temporal spiking neural networks
por: Li, Yuhang, et al.
Publicado: (2023) -
Synthesis of neural networks for spatio-temporal spike pattern recognition and processing
por: Tapson, Jonathan C., et al.
Publicado: (2013) -
Heterogeneous recurrent spiking neural network for spatio-temporal classification
por: Chakraborty, Biswadeep, et al.
Publicado: (2023) -
Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks
por: Wu, Yujie, et al.
Publicado: (2018) -
STSC-SNN: Spatio-Temporal Synaptic Connection with temporal convolution and attention for spiking neural networks
por: Yu, Chengting, et al.
Publicado: (2022)