Cargando…
Role of 3D printing in surgical education for robotic urology procedures
During the past 5 years, the body of literature surrounding the utilization of three-dimensional (3D) printing in the field of urology has grown exponentially. Incentivized by work hour restrictions, patient safety initiatives, and inspired by technical advances in biomaterials and rapid printing st...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214988/ https://www.ncbi.nlm.nih.gov/pubmed/32420209 http://dx.doi.org/10.21037/tau.2020.01.03 |
_version_ | 1783532087673880576 |
---|---|
author | Ghazi, Ahmed E. Teplitz, Brett A. |
author_facet | Ghazi, Ahmed E. Teplitz, Brett A. |
author_sort | Ghazi, Ahmed E. |
collection | PubMed |
description | During the past 5 years, the body of literature surrounding the utilization of three-dimensional (3D) printing in the field of urology has grown exponentially. Incentivized by work hour restrictions, patient safety initiatives, and inspired by technical advances in biomaterials and rapid printing strategies, this emerging, and fascinating area of research has begun to make headway into clinical practice. However, concerns about cost, limited understanding of the technical processes involved, and lack of its potential uses remain barriers to its widespread adoption. We examined existing published literature on how 3D printing technologies have been utilized in the field of Urology to enhance pre-operative planning, revitalize surgical training, and modernize patient education, with particular focus on, robotic surgery. To date, 3D-printed models have been used and studied most commonly in the preoperative planning for nephron-sparing surgeries during the treatment of renal masses, where the challenges of complex renal anatomy and benefits of reducing renal ischemic injury create the most intuitive value. Prostate models are the second most common, particularly in the planning of nerve-sparing procedures. Early studies have demonstrated sufficient realism and educational effectiveness. Subsequent studies demonstrated improved surgeon confidence, operative performance, and optimized patient outcomes including high levels of patient satisfaction. Realistic, accurate, and reasonably priced models can currently be generated within hours using standard desktop 3D printers. While primarily utilized as anatomic replicas of diseased organs that restore a sense of haptic feedback lost in robotic procedures, innovations in polymers, improvements in 3D printer host and modeling software, and upgrades in printer hardware allow this technology to serve as a comprehensive, interactive, simulation platform that can be a critical surgical decision making as well as an effective teaching tool. As Urologists continue to rapidly diversify and iterate upon this adaptive modality, the benefits in patient outcomes will likely outpace the diminishing drawbacks, and we may well see the next revolution in surgical education, robotic techniques, and personalized medicine concurrently. |
format | Online Article Text |
id | pubmed-7214988 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-72149882020-05-15 Role of 3D printing in surgical education for robotic urology procedures Ghazi, Ahmed E. Teplitz, Brett A. Transl Androl Urol Review Article on Robotic-assisted Urologic Surgery During the past 5 years, the body of literature surrounding the utilization of three-dimensional (3D) printing in the field of urology has grown exponentially. Incentivized by work hour restrictions, patient safety initiatives, and inspired by technical advances in biomaterials and rapid printing strategies, this emerging, and fascinating area of research has begun to make headway into clinical practice. However, concerns about cost, limited understanding of the technical processes involved, and lack of its potential uses remain barriers to its widespread adoption. We examined existing published literature on how 3D printing technologies have been utilized in the field of Urology to enhance pre-operative planning, revitalize surgical training, and modernize patient education, with particular focus on, robotic surgery. To date, 3D-printed models have been used and studied most commonly in the preoperative planning for nephron-sparing surgeries during the treatment of renal masses, where the challenges of complex renal anatomy and benefits of reducing renal ischemic injury create the most intuitive value. Prostate models are the second most common, particularly in the planning of nerve-sparing procedures. Early studies have demonstrated sufficient realism and educational effectiveness. Subsequent studies demonstrated improved surgeon confidence, operative performance, and optimized patient outcomes including high levels of patient satisfaction. Realistic, accurate, and reasonably priced models can currently be generated within hours using standard desktop 3D printers. While primarily utilized as anatomic replicas of diseased organs that restore a sense of haptic feedback lost in robotic procedures, innovations in polymers, improvements in 3D printer host and modeling software, and upgrades in printer hardware allow this technology to serve as a comprehensive, interactive, simulation platform that can be a critical surgical decision making as well as an effective teaching tool. As Urologists continue to rapidly diversify and iterate upon this adaptive modality, the benefits in patient outcomes will likely outpace the diminishing drawbacks, and we may well see the next revolution in surgical education, robotic techniques, and personalized medicine concurrently. AME Publishing Company 2020-04 /pmc/articles/PMC7214988/ /pubmed/32420209 http://dx.doi.org/10.21037/tau.2020.01.03 Text en 2020 Translational Andrology and Urology. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Review Article on Robotic-assisted Urologic Surgery Ghazi, Ahmed E. Teplitz, Brett A. Role of 3D printing in surgical education for robotic urology procedures |
title | Role of 3D printing in surgical education for robotic urology procedures |
title_full | Role of 3D printing in surgical education for robotic urology procedures |
title_fullStr | Role of 3D printing in surgical education for robotic urology procedures |
title_full_unstemmed | Role of 3D printing in surgical education for robotic urology procedures |
title_short | Role of 3D printing in surgical education for robotic urology procedures |
title_sort | role of 3d printing in surgical education for robotic urology procedures |
topic | Review Article on Robotic-assisted Urologic Surgery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7214988/ https://www.ncbi.nlm.nih.gov/pubmed/32420209 http://dx.doi.org/10.21037/tau.2020.01.03 |
work_keys_str_mv | AT ghaziahmede roleof3dprintinginsurgicaleducationforroboticurologyprocedures AT teplitzbretta roleof3dprintinginsurgicaleducationforroboticurologyprocedures |