Cargando…
Carbon-Fiber Enriched Cement-Based Composites for Better Sustainability
Damage caused by global warming is rapidly increasing, and its adverse effects become more evident with each passing day. Although it is known that the use of alternative binder materials in concrete would decrease this negative effect, reluctance to use such new composites continues. Waste plays a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215311/ https://www.ncbi.nlm.nih.gov/pubmed/32316592 http://dx.doi.org/10.3390/ma13081899 |
Sumario: | Damage caused by global warming is rapidly increasing, and its adverse effects become more evident with each passing day. Although it is known that the use of alternative binder materials in concrete would decrease this negative effect, reluctance to use such new composites continues. Waste plays a vital role in sustainability studies. In this study, pure cement paste was prepared and enriched with carbon fiber. This study also investigated the wide range of volume fraction of carbon fiber in cement-based composites. Two different types of industrial waste, i.e., marble dust and bottom ash, were chosen and mixed with cement and four different (0.3%, 0.75%, 1.5%, and 2.5%) carbon fiber volume fractions. Based on physical, mechanical, and durability tests at 7, 28, and 56 days of curing, the composites were resistant to sulfate and seawater attacks. The 0.75% carbon fiber addition seems to be an optimum volume percentage, beyond which both physical and mechanical properties were adversely affected. The composites with 0.75% carbon fiber reached 48.4 and 47.2 MPa at 56 days of curing for marble dust and bottom ash mixture groups, respectively. |
---|