Cargando…
The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori
Helicobacter pylori (H. pylori) is a primary etiologic factor in gastric diseases. Sulglycotide is a glycopeptide derived from pig duodenal mucin. Esterification of its carbohydrate chains with sulfate groups creates a potent gastroprotective agent used to treat various gastric diseases. We investig...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215434/ https://www.ncbi.nlm.nih.gov/pubmed/32340212 http://dx.doi.org/10.3390/ijerph17082918 |
_version_ | 1783532186372145152 |
---|---|
author | Yang, Ji Yeong Kim, Pumsoo Jeong, Seok-Hoo Lee, Seong Woong Myung, Yu Sik Baeg, Myong Ki Kim, Jong-Bae |
author_facet | Yang, Ji Yeong Kim, Pumsoo Jeong, Seok-Hoo Lee, Seong Woong Myung, Yu Sik Baeg, Myong Ki Kim, Jong-Bae |
author_sort | Yang, Ji Yeong |
collection | PubMed |
description | Helicobacter pylori (H. pylori) is a primary etiologic factor in gastric diseases. Sulglycotide is a glycopeptide derived from pig duodenal mucin. Esterification of its carbohydrate chains with sulfate groups creates a potent gastroprotective agent used to treat various gastric diseases. We investigated the inhibitory effects of sulglycotide on adhesion and inflammation after H. pylori infection in human gastric adenocarcinoma cells (AGS cells). H. pylori reference strain 60190 (ATCC 49503) was cultured on Brucella agar supplemented with 10% bovine serum. Sulgylcotide-mediated growth inhibition of H. pylori was evaluated using the broth dilution method. Inhibition of H. pylori adhesion to AGS cells by sulglycotide was assessed using a urease assay. Effects of sulglycotide on the translocation of virulence factors was measured using western blot to detect cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) proteins. Inhibition of IL-8 secretion was measured using enzyme-linked immunosorbent assay (ELISA) to determine the effects of sulglycotide on inflammation. Sulglycotide did not inhibit the growth of H. pylori, however, after six and 12 hours of infection on AGS cells, H. pylori adhesion was significantly inhibited by approximately 60% by various concentrations of sulglycotide. Sulglycotide decreased H. pylori virulence factor (CagA and VacA) translocation to AGS cells and inhibited IL-8 secretion. Sulglycotide inhibited H. pylori adhesion and inflammation after infection of AGS cells in vitro. These results support the use of sulglycotide to treat H. pylori infections. |
format | Online Article Text |
id | pubmed-7215434 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-72154342020-05-18 The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori Yang, Ji Yeong Kim, Pumsoo Jeong, Seok-Hoo Lee, Seong Woong Myung, Yu Sik Baeg, Myong Ki Kim, Jong-Bae Int J Environ Res Public Health Article Helicobacter pylori (H. pylori) is a primary etiologic factor in gastric diseases. Sulglycotide is a glycopeptide derived from pig duodenal mucin. Esterification of its carbohydrate chains with sulfate groups creates a potent gastroprotective agent used to treat various gastric diseases. We investigated the inhibitory effects of sulglycotide on adhesion and inflammation after H. pylori infection in human gastric adenocarcinoma cells (AGS cells). H. pylori reference strain 60190 (ATCC 49503) was cultured on Brucella agar supplemented with 10% bovine serum. Sulgylcotide-mediated growth inhibition of H. pylori was evaluated using the broth dilution method. Inhibition of H. pylori adhesion to AGS cells by sulglycotide was assessed using a urease assay. Effects of sulglycotide on the translocation of virulence factors was measured using western blot to detect cytotoxin-associated protein A (CagA) and vacuolating cytotoxin A (VacA) proteins. Inhibition of IL-8 secretion was measured using enzyme-linked immunosorbent assay (ELISA) to determine the effects of sulglycotide on inflammation. Sulglycotide did not inhibit the growth of H. pylori, however, after six and 12 hours of infection on AGS cells, H. pylori adhesion was significantly inhibited by approximately 60% by various concentrations of sulglycotide. Sulglycotide decreased H. pylori virulence factor (CagA and VacA) translocation to AGS cells and inhibited IL-8 secretion. Sulglycotide inhibited H. pylori adhesion and inflammation after infection of AGS cells in vitro. These results support the use of sulglycotide to treat H. pylori infections. MDPI 2020-04-23 2020-04 /pmc/articles/PMC7215434/ /pubmed/32340212 http://dx.doi.org/10.3390/ijerph17082918 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Ji Yeong Kim, Pumsoo Jeong, Seok-Hoo Lee, Seong Woong Myung, Yu Sik Baeg, Myong Ki Kim, Jong-Bae The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title | The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title_full | The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title_fullStr | The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title_full_unstemmed | The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title_short | The Effects of Sulglycotide on the Adhesion and the Inflammation of Helicobacter Pylori |
title_sort | effects of sulglycotide on the adhesion and the inflammation of helicobacter pylori |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215434/ https://www.ncbi.nlm.nih.gov/pubmed/32340212 http://dx.doi.org/10.3390/ijerph17082918 |
work_keys_str_mv | AT yangjiyeong theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT kimpumsoo theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT jeongseokhoo theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT leeseongwoong theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT myungyusik theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT baegmyongki theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT kimjongbae theeffectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT yangjiyeong effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT kimpumsoo effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT jeongseokhoo effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT leeseongwoong effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT myungyusik effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT baegmyongki effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori AT kimjongbae effectsofsulglycotideontheadhesionandtheinflammationofhelicobacterpylori |