Cargando…

Recovery of Tendon Characteristics by Inhibition of Aberrant Differentiation of Tendon-Derived Stem Cells from Degenerative Tendinopathy

The inhibition of the aberrant differentiation of tendon-derived stem cells (TDSCs) is a major target for the regeneration of damaged tendon tissues, as tendinopathy can be caused by the aberrant differentiation of TDSCs. We investigated whether the possible aberrant differentiation of TDSCs can be...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sun Jeong, Oh, Hae Won, Chang, Jong Wook, Kim, Sang Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7215446/
https://www.ncbi.nlm.nih.gov/pubmed/32294907
http://dx.doi.org/10.3390/ijms21082687
Descripción
Sumario:The inhibition of the aberrant differentiation of tendon-derived stem cells (TDSCs) is a major target for the regeneration of damaged tendon tissues, as tendinopathy can be caused by the aberrant differentiation of TDSCs. We investigated whether the possible aberrant differentiation of TDSCs can be prevented by using adequate inhibitors. TDSCs extracted from chemically induced tendinopathy and injury-with-overuse tendinopathy models were cultured with 18α-glycyrrhetinic acid (AGA) and T0070907 to block osteogenic differentiation and adipogenic differentiation, respectively. The optimal dose of AGA decreased the osteogenic-specific marker Runx2 (Runt-related transcription factor 2), and T0070907 blocked the adipogenic-specific marker peroxisome proliferator-activated receptor gamma (PPARγ) in mRNA levels. We also found that AGA induced tenogenic differentiation in mRNA levels. However, T0070907 did not affect the tenogenic differentiation and regenerative capacity of TDSCs. We expect that optimal doses of AGA and T0070907 can prevent tendinopathy by inhibiting osteogenic and adipogenic differentiation, respectively. In addition, AGA and T0070907 may play important roles in the treatment of tendinopathy.